Self-organized canals enable long range directed material transport in bacterial communities

  1. Ye Li
  2. Shiqi Liu
  3. Yingdan Zhang
  4. Zi Jing Seng
  5. Haoran Xu
  6. Liang Yang  Is a corresponding author
  7. Yilin Wu  Is a corresponding author
  1. Chinese University of Hong Kong, China
  2. Southern University of Science and Technology, China
  3. Nanyang Technological University, Singapore

Abstract

Long-range material transport is essential to maintain the physiological functions of multicellular organisms such as animals and plants. By contrast, material transport in bacteria is often short-ranged and limited by diffusion. Here we report a unique form of actively regulated long-range directed material transport in structured bacterial communities. Using Pseudomonas aeruginosa colonies as a model system, we discover that a large-scale and temporally evolving open channel system spontaneously develops in the colony via shear-induced banding. Fluid flows in the open channels support high-speed (up to 450 µm/s) transport of cells and outer membrane vesicles over centimeters, and help to eradicate colonies of a competing species Staphylococcus aureus. The open channels are reminiscent of human-made canals for cargo transport, and the channel flows are driven by interfacial tension mediated by cell-secreted biosurfactants. The spatial-temporal dynamics of fluid flows in the open channels are qualitatively described by flow profile measurement and mathematical modeling. Our findings demonstrate that mechanochemical coupling between interfacial force and biosurfactant kinetics can coordinate large-scale material transport in primitive life forms, suggesting a new principle to engineer self-organized microbial communities.

Data availability

All data are available in the main text or the Supplementary Information.

Article and author information

Author details

  1. Ye Li

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shiqi Liu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yingdan Zhang

    School of Medicine, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zi Jing Seng

    Singapore Center for Environmental Life Science Engineering, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Haoran Xu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-297X
  6. Liang Yang

    Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
    For correspondence
    yangl@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Yilin Wu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    For correspondence
    ylwu@cuhk.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0392-2137

Funding

Ministry of Science and Technology of the People's Republic of China (No. 2020YFA0910700)

  • Yilin Wu

Research Grants Council, University Grants Committee (No. 14306820,14307821,RFS2021-4S04 and CUHK Direct Grants)

  • Yilin Wu

Guangdong Natural Science Foundation (No. 2020B1515020003)

  • Liang Yang

Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110640)

  • Yingdan Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,563
    views
  • 321
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ye Li
  2. Shiqi Liu
  3. Yingdan Zhang
  4. Zi Jing Seng
  5. Haoran Xu
  6. Liang Yang
  7. Yilin Wu
(2022)
Self-organized canals enable long range directed material transport in bacterial communities
eLife 11:e79780.
https://doi.org/10.7554/eLife.79780

Share this article

https://doi.org/10.7554/eLife.79780

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources Updated

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B-cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution, and dynamics. We present HILARy (high-precision inference of lineages in antibody repertoires), an efficient, fast, and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and dN/dS ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Physics of Living Systems
    Marcelo A Carignano, Martin Kroeger ... Igal Szleifer
    Research Article

    We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions. The SR-EV rules of return generate conformationally defined domains observed by single-cell imaging techniques. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes occurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistant to an external forcing such as RAD21 degradation.