Self-organized canals enable long range directed material transport in bacterial communities

  1. Ye Li
  2. Shiqi Liu
  3. Yingdan Zhang
  4. Zi Jing Seng
  5. Haoran Xu
  6. Liang Yang  Is a corresponding author
  7. Yilin Wu  Is a corresponding author
  1. Chinese University of Hong Kong, China
  2. Southern University of Science and Technology, China
  3. Nanyang Technological University, Singapore

Abstract

Long-range material transport is essential to maintain the physiological functions of multicellular organisms such as animals and plants. By contrast, material transport in bacteria is often short-ranged and limited by diffusion. Here we report a unique form of actively regulated long-range directed material transport in structured bacterial communities. Using Pseudomonas aeruginosa colonies as a model system, we discover that a large-scale and temporally evolving open channel system spontaneously develops in the colony via shear-induced banding. Fluid flows in the open channels support high-speed (up to 450 µm/s) transport of cells and outer membrane vesicles over centimeters, and help to eradicate colonies of a competing species Staphylococcus aureus. The open channels are reminiscent of human-made canals for cargo transport, and the channel flows are driven by interfacial tension mediated by cell-secreted biosurfactants. The spatial-temporal dynamics of fluid flows in the open channels are qualitatively described by flow profile measurement and mathematical modeling. Our findings demonstrate that mechanochemical coupling between interfacial force and biosurfactant kinetics can coordinate large-scale material transport in primitive life forms, suggesting a new principle to engineer self-organized microbial communities.

Data availability

All data are available in the main text or the Supplementary Information.

Article and author information

Author details

  1. Ye Li

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shiqi Liu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yingdan Zhang

    School of Medicine, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zi Jing Seng

    Singapore Center for Environmental Life Science Engineering, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Haoran Xu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-297X
  6. Liang Yang

    Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
    For correspondence
    yangl@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Yilin Wu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    For correspondence
    ylwu@cuhk.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0392-2137

Funding

Ministry of Science and Technology of the People's Republic of China (No. 2020YFA0910700)

  • Yilin Wu

Research Grants Council, University Grants Committee (No. 14306820,14307821,RFS2021-4S04 and CUHK Direct Grants)

  • Yilin Wu

Guangdong Natural Science Foundation (No. 2020B1515020003)

  • Liang Yang

Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110640)

  • Yingdan Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sigal Ben-Yehuda, Hebrew University, Israel

Version history

  1. Received: April 26, 2022
  2. Preprint posted: May 19, 2022 (view preprint)
  3. Accepted: September 23, 2022
  4. Accepted Manuscript published: September 26, 2022 (version 1)
  5. Version of Record published: November 2, 2022 (version 2)

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,335
    Page views
  • 289
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ye Li
  2. Shiqi Liu
  3. Yingdan Zhang
  4. Zi Jing Seng
  5. Haoran Xu
  6. Liang Yang
  7. Yilin Wu
(2022)
Self-organized canals enable long range directed material transport in bacterial communities
eLife 11:e79780.
https://doi.org/10.7554/eLife.79780

Share this article

https://doi.org/10.7554/eLife.79780

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Ray Chang, Ari Davydov ... Manu Prakash
    Research Article

    Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3–4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60–140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.

    1. Physics of Living Systems
    Yangfan Zhang, George V Lauder
    Research Article

    Many animals moving through fluids exhibit highly coordinated group movement that is thought to reduce the cost of locomotion. However, direct energetic measurements demonstrating the energy-saving benefits of fluid-mediated collective movements remain elusive. By characterizing both aerobic and anaerobic metabolic energy contributions in schools of giant danio (Devario aequipinnatus), we discovered that fish schools have a concave upward shaped metabolism–speed curve, with a minimum metabolic cost at ~1 body length s-1. We demonstrate that fish schools reduce total energy expenditure (TEE) per tail beat by up to 56% compared to solitary fish. When reaching their maximum sustained swimming speed, fish swimming in schools had a 44% higher maximum aerobic performance and used 65% less non-aerobic energy compared to solitary individuals, which lowered the TEE and total cost of transport by up to 53%, near the lowest recorded for any aquatic organism. Fish in schools also recovered from exercise 43% faster than solitary fish. The non-aerobic energetic savings that occur when fish in schools actively swim at high speed can considerably improve both peak and repeated performance which is likely to be beneficial for evading predators. These energetic savings may underlie the prevalence of coordinated group locomotion in fishes.