Self-organized canals enable long range directed material transport in bacterial communities

  1. Ye Li
  2. Shiqi Liu
  3. Yingdan Zhang
  4. Zi Jing Seng
  5. Haoran Xu
  6. Liang Yang  Is a corresponding author
  7. Yilin Wu  Is a corresponding author
  1. Chinese University of Hong Kong, China
  2. Southern University of Science and Technology, China
  3. Nanyang Technological University, Singapore

Abstract

Long-range material transport is essential to maintain the physiological functions of multicellular organisms such as animals and plants. By contrast, material transport in bacteria is often short-ranged and limited by diffusion. Here we report a unique form of actively regulated long-range directed material transport in structured bacterial communities. Using Pseudomonas aeruginosa colonies as a model system, we discover that a large-scale and temporally evolving open channel system spontaneously develops in the colony via shear-induced banding. Fluid flows in the open channels support high-speed (up to 450 µm/s) transport of cells and outer membrane vesicles over centimeters, and help to eradicate colonies of a competing species Staphylococcus aureus. The open channels are reminiscent of human-made canals for cargo transport, and the channel flows are driven by interfacial tension mediated by cell-secreted biosurfactants. The spatial-temporal dynamics of fluid flows in the open channels are qualitatively described by flow profile measurement and mathematical modeling. Our findings demonstrate that mechanochemical coupling between interfacial force and biosurfactant kinetics can coordinate large-scale material transport in primitive life forms, suggesting a new principle to engineer self-organized microbial communities.

Data availability

All data are available in the main text or the Supplementary Information.

Article and author information

Author details

  1. Ye Li

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shiqi Liu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yingdan Zhang

    School of Medicine, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zi Jing Seng

    Singapore Center for Environmental Life Science Engineering, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Haoran Xu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-297X
  6. Liang Yang

    Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
    For correspondence
    yangl@sustech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Yilin Wu

    Department of Physics, Chinese University of Hong Kong, Hong Kong, China
    For correspondence
    ylwu@cuhk.edu.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0392-2137

Funding

Ministry of Science and Technology of the People's Republic of China (No. 2020YFA0910700)

  • Yilin Wu

Research Grants Council, University Grants Committee (No. 14306820,14307821,RFS2021-4S04 and CUHK Direct Grants)

  • Yilin Wu

Guangdong Natural Science Foundation (No. 2020B1515020003)

  • Liang Yang

Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110640)

  • Yingdan Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,693
    views
  • 345
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ye Li
  2. Shiqi Liu
  3. Yingdan Zhang
  4. Zi Jing Seng
  5. Haoran Xu
  6. Liang Yang
  7. Yilin Wu
(2022)
Self-organized canals enable long range directed material transport in bacterial communities
eLife 11:e79780.
https://doi.org/10.7554/eLife.79780

Share this article

https://doi.org/10.7554/eLife.79780

Further reading

    1. Physics of Living Systems
    James E Hammond, Ruth E Baker, Berta Verd
    Research Article

    Vertebrates have evolved great diversity in the number of segments dividing the trunk body, however, the developmental origin of the evolvability of this trait is poorly understood. The number of segments is thought to be determined in embryogenesis as a product of morphogenesis of the pre-somitic mesoderm (PSM) and the periodicity of a molecular oscillator active within the PSM known as the segmentation clock. Here, we explore whether the clock and PSM morphogenesis exhibit developmental modularity, as independent evolution of these two processes may explain the high evolvability of segment number. Using a computational model of the clock and PSM parameterised for zebrafish, we find that the clock is broadly robust to variation in morphogenetic processes such as cell ingression, motility, compaction, and cell division. We show that this robustness is in part determined by the length of the PSM and the strength of phase coupling in the clock. As previous studies report no changes to morphogenesis upon perturbing the clock, we suggest that the clock and morphogenesis of the PSM exhibit developmental modularity.

    1. Physics of Living Systems
    Emmanuel Akabuogu, Victor Carneiro da Cunha Martorelli ... Thomas A Waigh
    Research Article

    Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.