Resource allocation accounts for the large variability of rate-yield phenotypes across bacterial strains

  1. Valentina Baldazzi  Is a corresponding author
  2. Delphine Ropers
  3. Jean-Luc Gouzé
  4. Tomas Gedeon
  5. Hidde de Jong  Is a corresponding author
  1. 1Université Côte d'Azur, Inria, INRAE, CNRS, France
  2. Université Grenoble Alpes, France
  3. Montana State University, United States

Abstract

Different strains of a microorganism growing in the same environment display a wide variety of growth rates and growth yields. We developed a coarse-grained model to test the hypothesis that different resource allocation strategies, corresponding to different compositions of the proteome, can account for the observed rate-yield variability. The model predictions were verified by means of a database of hundreds of published rate-yield and uptake-secretion phenotypes of Escherichia coli strains grown in standard laboratory conditions. We found a very good quantitative agreement between the range of predicted and observed growth rates, growth yields, and glucose uptake and acetate secretion rates. These results support the hypothesis that resource allocation is a major explanatory factor of the observed variability of growth rates and growth yields across different bacterial strains. An interesting prediction of our model, supported by the experimental data, is that high growth rates are not necessarily accompanied by low growth yields. The resource allocation strategies enabling high-rate, high-yield growth of E. coli lead to a higher saturation of enzymes and ribosomes, and thus to a more efficient utilization of proteomic resources. Our model thus contributes to a fundamental understanding of the quantitative relationship between rate and yield in E. coli and other microorganisms. It may also be useful for the rapid screening of strains in metabolic engineering and synthetic biology.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Models and simulation code are available at https://gitlab.inria.fr/baldazzi/coliallocation. Literature data used for model calibration and validation are included in the manuscript as Supplementary Files S1-S4

Article and author information

Author details

  1. Valentina Baldazzi

    Research Centre Inria Sophia Antipolis - Méditerranée, 1Université Côte d'Azur, Inria, INRAE, CNRS, Sophia Antipolis, France
    For correspondence
    valentina.baldazzi@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9734-9759
  2. Delphine Ropers

    Inria Grenoble - Rhône-Alpes research centre, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2659-3003
  3. Jean-Luc Gouzé

    Research Centre Inria Sophia Antipolis - Méditerranée, 1Université Côte d'Azur, Inria, INRAE, CNRS, Sophia Antipolis, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomas Gedeon

    Montana State University, Bozeman, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hidde de Jong

    Inria Grenoble - Rhône-Alpes research centre, Université Grenoble Alpes, Grenoble, France
    For correspondence
    Hidde.de-Jong@inria.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

French National Research Agency (Maximic project (ANR-17-CE40-0024))

  • Delphine Ropers
  • Jean-Luc Gouzé
  • Hidde de Jong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Petra Anne Levin, Washington University in St. Louis, United States

Version history

  1. Preprint posted: April 27, 2022 (view preprint)
  2. Received: April 27, 2022
  3. Accepted: May 30, 2023
  4. Accepted Manuscript published: May 31, 2023 (version 1)
  5. Version of Record published: June 15, 2023 (version 2)

Copyright

© 2023, Baldazzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 492
    Page views
  • 69
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valentina Baldazzi
  2. Delphine Ropers
  3. Jean-Luc Gouzé
  4. Tomas Gedeon
  5. Hidde de Jong
(2023)
Resource allocation accounts for the large variability of rate-yield phenotypes across bacterial strains
eLife 12:e79815.
https://doi.org/10.7554/eLife.79815

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    David J Torres, Paulus Mrass ... Judy L Cannon
    Research Article Updated

    T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.

    1. Computational and Systems Biology
    Ricardo Omar Ramirez Flores, Jan David Lanzer ... Julio Saez-Rodriguez
    Research Article

    Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.