Dendritic cell Piezo1 stimulated by mechanical stiffness or inflammatory signals directs the differentiation of TH1 and Treg cells in cancer

  1. Yuexin Wang
  2. Hui Yang
  3. Anna Jia
  4. Yufei Wang
  5. Qiuli Yang
  6. Yingjie Dong
  7. Yueru Hou
  8. Yejin Cao
  9. Lin Dong
  10. Yujing Bi  Is a corresponding author
  11. Guangwei Liu  Is a corresponding author
  1. Beijing Normal University, China
  2. Fudan University, China
  3. Beijing Institute of Microbiology and Epidemiology, China

Abstract

Dendritic cells (DCs) play an important role in anti-tumor immunity by inducing T cell differentiation. Herein, we found that the DC mechanical sensor Piezo1 stimulated by mechanical stiffness or inflammatory signals directs the reciprocal differentiation of TH1 and regulatory T (Treg) cells in cancer. Genetic deletion of Piezo1 in DCs inhibited the generation of TH1 cells while driving the development of Treg cells in promoting cancer growth in mice. Mechanistically, Piezo1-deficient DCs regulated the secretion of the polarizing cytokines TGFβ1 and IL-12, leading to increased TGFβR2-p-Smad3 activity and decreased IL-12Rβ2-p-STAT4 activity while inducing the reciprocal differentiation of Treg and TH1 cells. In addition, Piezo1 integrated the SIRT1-hypoxia-inducible factor-1 alpha (HIF1α)-dependent metabolic pathway and calcium-calcineurin-NFAT signaling pathway to orchestrate reciprocal TH1 and Treg lineage commitment through DC-derived IL-12 and TGFβ1. Our studies provide critical insight for understanding the role of the DC-based mechanical regulation of immunopathology in directing T cell lineage commitment in tumor microenvironments.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source Data files have provided for Fig.1.

Article and author information

Author details

  1. Yuexin Wang

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Hui Yang

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Jia

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yufei Wang

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiuli Yang

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yingjie Dong

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yueru Hou

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yejin Cao

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Lin Dong

    Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yujing Bi

    Beijing Institute of Microbiology and Epidemiology, Beijing, China
    For correspondence
    byj7801@sina.com
    Competing interests
    The authors declare that no competing interests exist.
  11. Guangwei Liu

    Beijing Normal University, Beijing, China
    For correspondence
    liugw@bnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6008-2891

Funding

National Natural Science Foundation for Key Programm of China (31730024)

  • Guangwei Liu

National Natural Science Foundation for General Program of China (32170911)

  • Guangwei Liu

Beijing Municipal Natural Science Foundation of China (5202013)

  • Guangwei Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Animal Ethics Committee of Fudan University, Shanghai, China, Beijing Institute of Microbiology and Epidemiology and Beijing Normal University (IACUC-DWZX-2017-003 and CLS-EAW-2017-002)

Human subjects: Normal human DCs (CC-2701; Lonza) and human cord blood CD4+ T cells (2C-200; Lonza) were obtained from Lonza Company. All human subject experiments were performed with the approval of the Ethics Committee of of Fudan University, China and Beijing Normal University, China.

Reviewing Editor

  1. Kellie N Smith, The Johns Hopkins University School of Medicine, United States

Version history

  1. Received: May 3, 2022
  2. Preprint posted: May 18, 2022 (view preprint)
  3. Accepted: August 20, 2022
  4. Accepted Manuscript published: August 22, 2022 (version 1)
  5. Version of Record published: September 7, 2022 (version 2)

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,340
    Page views
  • 462
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuexin Wang
  2. Hui Yang
  3. Anna Jia
  4. Yufei Wang
  5. Qiuli Yang
  6. Yingjie Dong
  7. Yueru Hou
  8. Yejin Cao
  9. Lin Dong
  10. Yujing Bi
  11. Guangwei Liu
(2022)
Dendritic cell Piezo1 stimulated by mechanical stiffness or inflammatory signals directs the differentiation of TH1 and Treg cells in cancer
eLife 11:e79957.
https://doi.org/10.7554/eLife.79957

Further reading

    1. Cancer Biology
    Gehad Youssef, Luke Gammon ... Adrian Biddle
    Research Article

    Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in human oral cancer cell lines. This afforded the opportunity to investigate whether the combination of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the tumour body in metastatic specimens. Through training an artificial neural network, these predict metastasis with high accuracy (cross-validated accuracy of 87-89%). In this study, we have observed single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of metastatic disease.

    1. Cancer Biology
    2. Medicine
    Dingyu Rao, Hua Lu ... Defa Huang
    Research Article

    Esophageal cancer (EC) is a fatal digestive disease with a poor prognosis and frequent lymphatic metastases. Nevertheless, reliable biomarkers for EC diagnosis are currently unavailable. Accordingly, we have performed a comparative proteomics analysis on cancer and paracancer tissue-derived exosomes from eight pairs of EC patients using label-free quantification proteomics profiling and have analyzed the differentially expressed proteins through bioinformatics. Furthermore, nano-flow cytometry (NanoFCM) was used to validate the candidate proteins from plasma-derived exosomes in 122 EC patients. Of the 803 differentially expressed proteins discovered in cancer and paracancer tissue-derived exosomes, 686 were up-regulated and 117 were down-regulated. Intercellular adhesion molecule-1 (CD54) was identified as an up-regulated candidate for further investigation, and its high expression in cancer tissues of EC patients was validated using immunohistochemistry, real-time quantitative PCR (RT-qPCR), and western blot analyses. In addition, plasma-derived exosome NanoFCM data from 122 EC patients concurred with our proteomic analysis. The receiver operating characteristic (ROC) analysis demonstrated that the AUC, sensitivity, and specificity values for CD54 were 0.702, 66.13%, and 71.31%, respectively, for EC diagnosis. Small interference (si)RNA was employed to silence the CD54 gene in EC cells. A series of assays, including cell counting kit-8, adhesion, wound healing, and Matrigel invasion, were performed to investigate EC viability, adhesive, migratory, and invasive abilities, respectively. The results showed that CD54 promoted EC proliferation, migration, and invasion. Collectively, tissue-derived exosomal proteomics strongly demonstrates that CD54 is a promising biomarker for EC diagnosis and a key molecule for EC development.