A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell divisions

  1. Marc de Manuel  Is a corresponding author
  2. Felix L Wu  Is a corresponding author
  3. Molly Przeworski  Is a corresponding author
  1. Columbia University, United States

Abstract

In humans and other mammals, germline mutations are more likely to arise in fathers than in mothers. Although this sex bias has long been attributed to DNA replication errors in spermatogenesis, recent evidence from humans points to the importance of mutagenic processes that do not depend on cell division, calling into question our understanding of this basic phenomenon. Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from putatively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences in gametogenesis, physiologies and environments across species, fathers consistently contribute more mutations than mothers in all the species examined, including mammals, birds and reptiles. In mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more stable around 2. These observations are consistent with a simple model, in which mutations accrue at equal rates in both sexes during early development and at a higher rate in the male germline after sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect the relative contributions of two or more developmental phases to total germline mutations, and is expected to depend on generation time even if mutations do not track cell divisions.

Data availability

All source data and scripts to reproduce the findings in the manuscript can be found at https://github.com/flw88/mut_sex_bias_amniotes

The following previously published data sets were used

Article and author information

Author details

  1. Marc de Manuel

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    md3914@columbia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1245-0127
  2. Felix L Wu

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    flw2113@cumc.columbia.edu
    Competing interests
    No competing interests declared.
  3. Molly Przeworski

    Department of Systems Biology, Columbia University, New York, United States
    For correspondence
    mp3284@columbia.edu
    Competing interests
    Molly Przeworski, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5369-9009

Funding

National Institutes of Health (GM122975)

  • Molly Przeworski

Human Frontier Science Program (LT000257/2021-L)

  • Marc de Manuel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, Whitehead Institute/MIT, United States

Version history

  1. Preprint posted: February 9, 2022 (view preprint)
  2. Received: May 5, 2022
  3. Accepted: August 1, 2022
  4. Accepted Manuscript published: August 2, 2022 (version 1)
  5. Version of Record published: September 2, 2022 (version 2)

Copyright

© 2022, de Manuel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,154
    views
  • 325
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marc de Manuel
  2. Felix L Wu
  3. Molly Przeworski
(2022)
A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell divisions
eLife 11:e80008.
https://doi.org/10.7554/eLife.80008

Share this article

https://doi.org/10.7554/eLife.80008

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.