Sparse dimensionality reduction approaches in Mendelian randomization with highly correlated exposures

  1. Vasileios Karageorgiou  Is a corresponding author
  2. Dipender Gill
  3. Jack Bowden
  4. Verena Zuber
  1. University of Exeter, United Kingdom
  2. Imperial College London, United Kingdom

Abstract

Multivariable Mendelian randomization (MVMR) is an instrumental variable technique that generalizes the MR framework for multiple exposures. Framed as a linear regression problem, it is subject to the pitfall of multi-collinearity. The bias and efficiency of MVMR estimates thus depends heavily on the correlation of exposures. Dimensionality reduction techniques such as principal component analysis (PCA) provide transformations of all the included variables that are effectively uncorrelated. We propose the use of sparse PCA (sPCA) algorithms that create principal components of subsets of the exposures with the aim of providing more interpretable and reliable MR estimates. The approach consists of three steps. We first apply a sparse dimension reduction method and transform the variant-exposure summary statistics to principal components. We then choose a subset of the principal components based on data-driven cutoffs, and estimate their strength as instruments with an adjusted F-statistic. Finally, we perform MR with these transformed exposures. This pipeline is demonstrated in a simulation study of highly correlated exposures and an applied example using summary data from a genome-wide association study of 97 highly correlated lipid metabolites. As a positive control, we tested the causal associations of the transformed exposures on CHD. Compared to the conventional inverse-variance weighted MVMR method and a weak-instrument robust MVMR method (MR GRAPPLE), sparse component analysis achieved a superior balance of sparsity and biologically insightful grouping of the lipid traits.

Data availability

The GWAS summary statistics for the metabolites (http://www.computationalmedicine.fi/data/NMR_GWAS/) and CHD(http://www.cardiogramplusc4d.org/) are publicly available. We provide code for the SCA function, the simulation study and related documentation on github (https://github.com/vaskarageorg/SCA_MR/).

Article and author information

Author details

  1. Vasileios Karageorgiou

    University of Exeter, Exeter, United Kingdom
    For correspondence
    vk282@exeter.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7173-9967
  2. Dipender Gill

    Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
    Competing interests
    Dipender Gill, is a part-time employee of Novo Nordisk.
  3. Jack Bowden

    University of Exeter, Exeter, United Kingdom
    Competing interests
    No competing interests declared.
  4. Verena Zuber

    Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.

Funding

State Scholarships Foundation

  • Vasileios Karageorgiou

Expanding Excellence in England

  • Vasileios Karageorgiou
  • Jack Bowden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Karageorgiou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 950
    views
  • 123
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vasileios Karageorgiou
  2. Dipender Gill
  3. Jack Bowden
  4. Verena Zuber
(2023)
Sparse dimensionality reduction approaches in Mendelian randomization with highly correlated exposures
eLife 12:e80063.
https://doi.org/10.7554/eLife.80063

Share this article

https://doi.org/10.7554/eLife.80063

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Arkadiy K Golov, Alexey A Gavrilov ... Sergey V Razin
    Research Article

    The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions. Finally, leveraging data from published CRISPRi screens, we found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.