Cellular and circuit organization of the locus coeruleus of adult mice

  1. Andrew McKinney
  2. Ming Hu
  3. Amber Hoskins
  4. Arian Mohammadyar
  5. Nabeeha Naeem
  6. Junzhan Jing
  7. Saumil S Patel
  8. Bhavin R Sheth  Is a corresponding author
  9. Xiaolong Jiang  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. University of Houston, United States

Abstract

The locus coeruleus (LC) houses the vast majority of noradrenergic neurons in the brain and regulates many fundamental functions including fight and flight response, attention control, and sleep/wake cycles. While efferent projections of the LC have been extensively investigated, little is known about its local circuit organization. Here, we performed large-scale multi-patch recordings of noradrenergic neurons in adult mouse LC to profile their morpho-electric properties while simultaneously examining their interactions. LC noradrenergic neurons are diverse and could be classified into two major morpho-electric types. While fast excitatory synaptic transmission among LC noradrenergic neurons was not observed in our preparation, these mature LC neurons connected via gap junction at a rate similar to their early developmental stage and comparable to other brain regions. Most electrical connections form between dendrites and are restricted to narrowly spaced pairs or small clusters of neurons of the same type. In addition, more than two electrically coupled cell pairs were often identified across a cohort of neurons from individual multi-cell recording sets that followed a chain-like organizational pattern. The assembly of LC noradrenergic neurons thus follows a spatial and cell type-specific wiring principle that may be imposed by a unique chain-like rule.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. The data and custom codes supporting the findings are being deposited in Dryad (doi:10.5061/dryad.kh1893283)

The following data sets were generated

Article and author information

Author details

  1. Andrew McKinney

    Neuroscience Graduate Program, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ming Hu

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amber Hoskins

    Department of Electrical and Computer Engineering, University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Arian Mohammadyar

    Department of Electrical and Computer Engineering, University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nabeeha Naeem

    Department of Electrical and Computer Engineering, University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Junzhan Jing

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4647-0932
  7. Saumil S Patel

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bhavin R Sheth

    Department of Electrical and Computer Engineering, University of Houston, Houston, United States
    For correspondence
    brsheth@uh.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaolong Jiang

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    For correspondence
    xiaolonj@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8066-1383

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD103555)

  • Andrew McKinney
  • Ming Hu
  • Junzhan Jing
  • Xiaolong Jiang

National Eye Institute (T32 EY07001)

  • Andrew McKinney

National Institute of Mental Health (MH109556)

  • Ming Hu
  • Junzhan Jing
  • Xiaolong Jiang

National Institute of Neurological Disorders and Stroke (NS101596)

  • Andrew McKinney
  • Ming Hu
  • Xiaolong Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua Johansen, RIKEN Center for Brain Science, Japan

Version history

  1. Preprint posted: March 3, 2022 (view preprint)
  2. Received: May 7, 2022
  3. Accepted: February 1, 2023
  4. Accepted Manuscript published: February 3, 2023 (version 1)
  5. Version of Record published: February 16, 2023 (version 2)

Copyright

© 2023, McKinney et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,182
    views
  • 499
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew McKinney
  2. Ming Hu
  3. Amber Hoskins
  4. Arian Mohammadyar
  5. Nabeeha Naeem
  6. Junzhan Jing
  7. Saumil S Patel
  8. Bhavin R Sheth
  9. Xiaolong Jiang
(2023)
Cellular and circuit organization of the locus coeruleus of adult mice
eLife 12:e80100.
https://doi.org/10.7554/eLife.80100

Share this article

https://doi.org/10.7554/eLife.80100

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.