Depletion or cleavage of cohesin during anaphase differentially affects chromatin structure and segregation

  1. Jonay Garcia-Luis
  2. Hélène Bordelet
  3. Agnès Thierry
  4. Romain Koszul  Is a corresponding author
  5. Luis Aragon  Is a corresponding author
  1. MRC London Institute of Medical Sciences, United Kingdom
  2. Institut Pasteur, France

Abstract

Chromosome segregation requires both the separation of sister chromatids and the sustained condensation of chromatids during anaphase. In yeast cells, cohesin is not only required for sister chromatid cohesion but also plays a major role determining the structure of individual chromatids in metaphase. Separase cleavage is thought to remove all cohesin complexes from chromosomes to initiate anaphase. It is thus not clear how the length and organisation of segregating chromatids is maintained during anaphase in the absence of cohesin. Here we show that degradation of cohesin at the anaphase onset causes aberrant chromatid segregation. Hi-C analysis on segregating chromatids demonstrates that cohesin depletion causes loss of intrachromatid organisation. Surprisingly, TEV-mediated cleavage of cohesin does not dramatically disrupt chromatid organisation in anaphase, explaining why bulk segregation is achieved. In addition, we identified a small pool of cohesin complexes bound to telophase chromosomes in wildtype cells and show that they play a role in the organisation of centromeric regions. Our data demonstrates that in yeast cells cohesin function is not over in metaphase, but extends to the anaphase period when chromatids are segregating.

Data availability

Sequencing data have been deposited in GEO under accession codesGSE183481

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jonay Garcia-Luis

    DNA motors Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hélène Bordelet

    Régulation spatiale des génomes, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Agnès Thierry

    Régulation spatiale des génomes, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Romain Koszul

    Régulation spatiale des génomes, Institut Pasteur, Paris, France
    For correspondence
    romain.koszul@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3086-1173
  5. Luis Aragon

    DNA motors Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    luis.aragon@ic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0634-6742

Funding

Medical Research Council (UKRI MC-A652-5PY00)

  • Luis Aragon

Agence Nationale de la Recherche

  • Romain Koszul

Wellcome Trust (100955/Z/13/Z)

  • Jonay Garcia-Luis

European Research Council

  • Romain Koszul

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrés Aguilera, CABIMER, Universidad de Sevilla, Spain

Version history

  1. Preprint posted: August 28, 2021 (view preprint)
  2. Received: May 10, 2022
  3. Accepted: September 27, 2022
  4. Accepted Manuscript published: October 5, 2022 (version 1)
  5. Version of Record published: October 21, 2022 (version 2)

Copyright

© 2022, Garcia-Luis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,175
    Page views
  • 367
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonay Garcia-Luis
  2. Hélène Bordelet
  3. Agnès Thierry
  4. Romain Koszul
  5. Luis Aragon
(2022)
Depletion or cleavage of cohesin during anaphase differentially affects chromatin structure and segregation
eLife 11:e80147.
https://doi.org/10.7554/eLife.80147

Share this article

https://doi.org/10.7554/eLife.80147

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.