Spatiotemporal organization of human sensorimotor beta burst activity

  1. Catharina Zich  Is a corresponding author
  2. Andrew J Quinn
  3. James J Bonaiuto
  4. George O'Neill
  5. Lydia C Mardell
  6. Nick S Ward
  7. Sven Bestmann
  1. University College London, United Kingdom
  2. University of Oxford, United Kingdom
  3. Institut des Sciences Cognitives Marc Jeannerod, France

Abstract

Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral and spatiotemporal characteristics, indicating distinct functional roles.

Data availability

Data are available via the Open Science Framework (OSF) at https://osf. io/eu6nx. Data are also archived at the Open MEG Archive (OMEGA; Nisoetal.,2016) and may be accessed via http://dx .doi.org/10.23686/ 0015896 (Niso et al.,2018) after registration at https:// www.mcgill.ca/bic/resources/omega.

Article and author information

Author details

  1. Catharina Zich

    Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
    For correspondence
    catharina.zich@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0705-9297
  2. Andrew J Quinn

    Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2267-9897
  3. James J Bonaiuto

    Institut des Sciences Cognitives Marc Jeannerod, Bron, France
    Competing interests
    The authors declare that no competing interests exist.
  4. George O'Neill

    Department of Imaging Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lydia C Mardell

    Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3180-3239
  6. Nick S Ward

    Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Sven Bestmann

    epartment for Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6867-9545

Funding

Brain Research UK (201718-13)

  • Catharina Zich

Brain Research UK (201617-03)

  • Catharina Zich

Wellcome Trust (098369/Z/12/Z)

  • Andrew J Quinn

Engineering and Physical Sciences Research Council (EP/T001046/1)

  • George O'Neill

Medical Research Council (MR/N013867/1)

  • Lydia C Mardell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was in full accordance with the Declaration of Helsinki, and all participants gave written informed consent after being fully informed about the purpose of the study. The study protocol, participant information, and form of consent, were approved by the UCL Research Ethics Committee (reference number 5833/001).

Copyright

© 2023, Zich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,510
    views
  • 240
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catharina Zich
  2. Andrew J Quinn
  3. James J Bonaiuto
  4. George O'Neill
  5. Lydia C Mardell
  6. Nick S Ward
  7. Sven Bestmann
(2023)
Spatiotemporal organization of human sensorimotor beta burst activity
eLife 12:e80160.
https://doi.org/10.7554/eLife.80160

Share this article

https://doi.org/10.7554/eLife.80160

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.