Spatiotemporal organization of human sensorimotor beta burst activity

  1. Catharina Zich  Is a corresponding author
  2. Andrew J Quinn
  3. James J Bonaiuto
  4. George O'Neill
  5. Lydia C Mardell
  6. Nick S Ward
  7. Sven Bestmann
  1. University College London, United Kingdom
  2. University of Oxford, United Kingdom
  3. Institut des Sciences Cognitives Marc Jeannerod, France

Abstract

Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral and spatiotemporal characteristics, indicating distinct functional roles.

Data availability

Data are available via the Open Science Framework (OSF) at https://osf. io/eu6nx. Data are also archived at the Open MEG Archive (OMEGA; Nisoetal.,2016) and may be accessed via http://dx .doi.org/10.23686/ 0015896 (Niso et al.,2018) after registration at https:// www.mcgill.ca/bic/resources/omega.

Article and author information

Author details

  1. Catharina Zich

    Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
    For correspondence
    catharina.zich@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0705-9297
  2. Andrew J Quinn

    Department of Psychiatry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2267-9897
  3. James J Bonaiuto

    Institut des Sciences Cognitives Marc Jeannerod, Bron, France
    Competing interests
    The authors declare that no competing interests exist.
  4. George O'Neill

    Department of Imaging Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lydia C Mardell

    Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3180-3239
  6. Nick S Ward

    Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Sven Bestmann

    epartment for Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6867-9545

Funding

Brain Research UK (201718-13)

  • Catharina Zich

Brain Research UK (201617-03)

  • Catharina Zich

Wellcome Trust (098369/Z/12/Z)

  • Andrew J Quinn

Engineering and Physical Sciences Research Council (EP/T001046/1)

  • George O'Neill

Medical Research Council (MR/N013867/1)

  • Lydia C Mardell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was in full accordance with the Declaration of Helsinki, and all participants gave written informed consent after being fully informed about the purpose of the study. The study protocol, participant information, and form of consent, were approved by the UCL Research Ethics Committee (reference number 5833/001).

Copyright

© 2023, Zich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,368
    views
  • 224
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catharina Zich
  2. Andrew J Quinn
  3. James J Bonaiuto
  4. George O'Neill
  5. Lydia C Mardell
  6. Nick S Ward
  7. Sven Bestmann
(2023)
Spatiotemporal organization of human sensorimotor beta burst activity
eLife 12:e80160.
https://doi.org/10.7554/eLife.80160

Share this article

https://doi.org/10.7554/eLife.80160

Further reading

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.