The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila

  1. Arnau Llobet Rosell
  2. Maria Paglione
  3. Jonathan Gilley
  4. Magdalena Kocia
  5. Giulia Perillo
  6. Massimiliano Gasparrini
  7. Lucia Cialabrini
  8. Nadia Raffaelli
  9. Carlo Angeletti
  10. Giuseppe Orsomando
  11. Pei-Hsuan Wu
  12. Michael P Coleman
  13. Andrea Loreto
  14. Lukas Jakob Neukomm  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. University of Cambridge, United Kingdom
  3. University Hospital of Geneva, Switzerland
  4. Polytechnic University of Marche, Italy

Abstract

Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis, by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT), leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.

Data availability

Generated plasmids have been deposited in Addgene.All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Arnau Llobet Rosell

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7728-2999
  2. Maria Paglione

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Gilley

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9510-7956
  4. Magdalena Kocia

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Giulia Perillo

    Department of Genetic Medicine and Development, University Hospital of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Massimiliano Gasparrini

    Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Lucia Cialabrini

    Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Nadia Raffaelli

    Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Carlo Angeletti

    Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Giuseppe Orsomando

    Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6640-097X
  11. Pei-Hsuan Wu

    Department of Genetic Medicine and Development, University Hospital of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael P Coleman

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Andrea Loreto

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6535-6436
  14. Lukas Jakob Neukomm

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    For correspondence
    lukas.neukomm@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5007-3959

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (176855)

  • Lukas Jakob Neukomm

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (211015)

  • Lukas Jakob Neukomm

Biotechnology and Biological Sciences Research Council (BB/S009582/1a)

  • Jonathan Gilley

International Foundation for Research in Paraplegia (P180)

  • Lukas Jakob Neukomm

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (190919)

  • Lukas Jakob Neukomm

Università Politecnica delle Marche (2018-20)

  • Giuseppe Orsomando

Wellcome Trust (210904/Z/18/Z)

  • Andrea Loreto

John and Lucille Van Geest Foundation

  • Michael P Coleman

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (201535)

  • Pei-Hsuan Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Llobet Rosell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,545
    views
  • 270
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnau Llobet Rosell
  2. Maria Paglione
  3. Jonathan Gilley
  4. Magdalena Kocia
  5. Giulia Perillo
  6. Massimiliano Gasparrini
  7. Lucia Cialabrini
  8. Nadia Raffaelli
  9. Carlo Angeletti
  10. Giuseppe Orsomando
  11. Pei-Hsuan Wu
  12. Michael P Coleman
  13. Andrea Loreto
  14. Lukas Jakob Neukomm
(2022)
The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila
eLife 11:e80245.
https://doi.org/10.7554/eLife.80245

Share this article

https://doi.org/10.7554/eLife.80245

Further reading

    1. Cell Biology
    Satoshi Ninagawa, Masaki Matsuo ... Kazutoshi Mori
    Research Advance

    How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.