Multiple cullin-associated E3 ligases regulate cyclin D1 protein stability

  1. Ke Lu
  2. Ming Zhang
  3. Guizheng Wei
  4. Guozhi Xiao
  5. Liping Tong
  6. Di Chen  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Johns Hopkins University, United States
  3. Southern University of Science and Technology, China

Abstract

Cyclin D1 is a key regulator of cell cycle progression, which forms a complex with CDK4/6 to regulate G1/S transition during cell cycle progression. Cyclin D1 has been recognized as an oncogene since it was upregulated in several different types of cancers. It is known that the post-translational regulation of cyclin D1 is controlled by ubiquitination / proteasome degradation system in a phosphorylation-dependent manner. Several cullin-associated F-box E3 ligases have been shown to regulate cyclin D1 degradation; however, it is not known if additional cullin-associated E3 ligases participate in the regulation of cyclin D1 protein stability. In this study, we have screened a siRNA library containing siRNAs specific for 154 ligase subunits, including F-box, SOCS, BTB-containing proteins and DDB proteins. We found that multiple cullin-associated E3 ligases regulate cyclin D1 activity, including Keap1, DDB2 and WSB2. We found that these E3 ligases interact with cyclin D1, regulate cyclin D1 ubiquitination and proteasome degradation in a phosphorylation-dependent manner. These E3 ligases also control cell cycle progression and cell proliferation through regulation of cyclin D1 protein stability. Our study provides novel insights into the regulatory mechanisms of cyclin D1 protein stability and function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, Figure 2 and Figure supplements.

Article and author information

Author details

  1. Ke Lu

    Research Center for Computer-aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1641-4748
  2. Ming Zhang

    Department of Oncology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Guizheng Wei

    Research Center for Computer-aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0006-0479-5076
  4. Guozhi Xiao

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4269-2450
  5. Liping Tong

    Research Center for Computer-aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Di Chen

    Research Center for Computer-aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
    For correspondence
    di.chen@siat.ac.cn
    Competing interests
    Di Chen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4258-3457

Funding

National Key Research and Development Program of China (2021YFB3800800)

  • Liping Tong
  • Di Chen

National Natural Science Foundation of China (82030067)

  • Di Chen

National Natural Science Foundation of China (82161160342)

  • Di Chen

National Natural Science Foundation of China (82250710174)

  • Di Chen

National Natural Science Foundation of China (82172397)

  • Liping Tong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,381
    views
  • 220
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ke Lu
  2. Ming Zhang
  3. Guizheng Wei
  4. Guozhi Xiao
  5. Liping Tong
  6. Di Chen
(2023)
Multiple cullin-associated E3 ligases regulate cyclin D1 protein stability
eLife 12:e80327.
https://doi.org/10.7554/eLife.80327

Share this article

https://doi.org/10.7554/eLife.80327