Impaired bone strength and bone microstructure in a novel early-onset osteoporotic rat model with a clinically relevant PLS3 mutation

  1. Jing Hu
  2. Bingna Zhou
  3. Xiaoyun Lin
  4. Qian Zhang
  5. Feifei Guan
  6. Lei Sun
  7. Jiayi Liu
  8. Ou Wang
  9. Yan Jiang
  10. Wei-bo Xia
  11. Xiaoping Xing
  12. Mei Li  Is a corresponding author
  1. Peking Union Medical College Hospital, China
  2. Peking Union Medical College, China

Abstract

Plastin 3 (PLS3), a protein involved in formation of filamentous actin (F-actin) bundles, is important in human bone health. Recent studies identify PLS3 as a novel bone regulator and PLS3 mutations can lead to a rare monogenic early-onset osteoporosis. However, the mechanism of PLS3 mutation leading to osteoporosis is unknown, and its effective treatment strategies have not been established. Here we have constructed a novel rat model with clinically relevant hemizygous E10-16del mutation in PLS3 (PLS3E10-16del/0) that recapitulates the osteoporotic phenotypes with obviously thinner cortical thickness, significant decreases in yield load, maximum load, and breaking load of femora at 3, 6, 9 months old compared to wild type rats. Histomorphometric analysis indicates a significantly lower mineral apposition rate in PLS3E10-16del/0 rats. Treatment with alendronate (1.0 ug/kg per day) or teriparatide (40ug/kg five times weekly) for 8 weeks significantly improves bone mass and bone microarchitecture, and bone strength is significantly increased after teriparatide treatment (P<0.05). Thus, our results indicate that PLS3 plays an important role in the regulation of bone microstructure and bone strength, and we provide a novel animal model for the study of X-linked early-onset osteoporosis. Alendronate and teriparatide treatment could be a potential treatment for early-onset osteoporosis induced by PLS3 mutation.

Data availability

All data analyzed during this study are included in the manuscript and supporting file. Source Data files have been provided for Figures 1-4.

Article and author information

Author details

  1. Jing Hu

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Bingna Zhou

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoyun Lin

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qian Zhang

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Feifei Guan

    Institute of Laboratory Animal Science, Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lei Sun

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiayi Liu

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ou Wang

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yan Jiang

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Wei-bo Xia

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiaoping Xing

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Mei Li

    Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
    For correspondence
    limeilzh@sina.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4380-3511

Funding

National Key Research and Development Program of China (2018YFA0800801,2021YFC2501704)

  • Mei Li

Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2021-I2M-C&T-B-007,2021-I2M-1-051)

  • Mei Li

National Natural Science Foundation of China (No.81873668,82070908)

  • Mei Li

Beijing Natural Science Foundation (7202153)

  • Mei Li

Fundamental Research Funds for the Central Universities (3332022102)

  • Jing Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments were approved by the Institutional Animal Care and Use Committee of the Peking Union Medical College Hospital (XHDW-2021-027). Every effort was made to minimize pain and suffering by providing support when necessary and choosing ethical endpoints.

Copyright

© 2023, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 433
    views
  • 89
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jing Hu
  2. Bingna Zhou
  3. Xiaoyun Lin
  4. Qian Zhang
  5. Feifei Guan
  6. Lei Sun
  7. Jiayi Liu
  8. Ou Wang
  9. Yan Jiang
  10. Wei-bo Xia
  11. Xiaoping Xing
  12. Mei Li
(2023)
Impaired bone strength and bone microstructure in a novel early-onset osteoporotic rat model with a clinically relevant PLS3 mutation
eLife 12:e80365.
https://doi.org/10.7554/eLife.80365

Share this article

https://doi.org/10.7554/eLife.80365

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Genetics and Genomics
    Angela M Tuckowski, Safa Beydoun ... Scott F Leiser
    Research Article

    Flavin-containing monooxygenases (FMOs) are a conserved family of xenobiotic enzymes upregulated in multiple longevity interventions, including nematode and mouse models. Previous work supports that C. elegans fmo-2 promotes longevity, stress resistance, and healthspan by rewiring endogenous metabolism. However, there are five C. elegans FMOs and five mammalian FMOs, and it is not known whether promoting longevity and health benefits is a conserved role of this gene family. Here, we report that expression of C. elegans fmo-4 promotes lifespan extension and paraquat stress resistance downstream of both dietary restriction and inhibition of mTOR. We find that overexpression of fmo-4 in just the hypodermis is sufficient for these benefits, and that this expression significantly modifies the transcriptome. By analyzing changes in gene expression, we find that genes related to calcium signaling are significantly altered downstream of fmo-4 expression. Highlighting the importance of calcium homeostasis in this pathway, fmo-4 overexpressing animals are sensitive to thapsigargin, an ER stressor that inhibits calcium flux from the cytosol to the ER lumen. This calcium/fmo-4 interaction is solidified by data showing that modulating intracellular calcium with either small molecules or genetics can change expression of fmo-4 and/or interact with fmo-4 to affect lifespan and stress resistance. Further analysis supports a pathway where fmo-4 modulates calcium homeostasis downstream of activating transcription factor-6 (atf-6), whose knockdown induces and requires fmo-4 expression. Together, our data identify fmo-4 as a longevity-promoting gene whose actions interact with known longevity pathways and calcium homeostasis.