AGS3 antagonizes LGN to balance oriented cell divisions and cell fate choices in mammalian epidermis

  1. Carlos P Descovich
  2. Kendall J Lough
  3. Akankshya Jena
  4. Jessica J Wu
  5. Jina Yom
  6. Danielle C Spitzer
  7. Manuela Uppalapati
  8. Katarzyna M Kedziora
  9. Scott E Williams  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. University of California, Berkeley, United States

Abstract

Oriented cell divisions balance self-renewal and differentiation in stratified epithelia such as the skin epidermis. During peak epidermal stratification, the distribution of division angles among basal keratinocyte progenitors is bimodal, with planar and perpendicular divisions driving symmetric and asymmetric daughter cell fates, respectively. An apically-restricted, evolutionarily-conserved spindle orientation complex that includes the scaffolding protein LGN/Pins/Gpsm2 plays a central role in promoting perpendicular divisions and stratification, but why only a subset of cell polarize LGN is not known. Here, we demonstrate that the LGN paralog, AGS3/Gpsm1, is a novel negative regulator of LGN, and inhibits perpendicular divisions. Static and ex vivo live imaging reveal that AGS3 overexpression displaces LGN from the apical cortex and increases planar orientations, while AGS3 loss prolongs cortical LGN localization and leads to a perpendicular orientation bias. Genetic epistasis experiments in double mutants confirm that AGS3 operates through LGN. Finally, clonal lineage tracing shows that LGN and AGS3 promote asymmetric and symmetric fates, respectively, while also influencing differentiation through delamination. Collectively, these studies shed new light into how spindle orientation influences epidermal stratification.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for data in all figures.

Article and author information

Author details

  1. Carlos P Descovich

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6366-5195
  2. Kendall J Lough

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Akankshya Jena

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica J Wu

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jina Yom

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Danielle C Spitzer

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4827-1857
  7. Manuela Uppalapati

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katarzyna M Kedziora

    Bioinformatics and Analytics Research Collaborative, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Scott E Williams

    Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    scott_williams@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9975-7334

Funding

National Institutes of Health (R01 AR077591)

  • Scott E Williams

United States - Israel Binational Science Foundation (2019230)

  • Scott E Williams

Sidney Kimmel Foundation (SKF-15-065)

  • Scott E Williams

Chan Zuckerberg Initiative (2020- 225716)

  • Katarzyna M Kedziora

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols 19-155 and 22-121 at the University of North Carolina. All mice were housed in an AAALAC-accredited (#329; November, 2020), USDA registered (55-R-0004), NIH welfare-assured (D16-00256 (A3410-01) animal facility. All surgeries were performed under isoflurane anesthesia and meloxicam was alleviated post-operatively to minimize pain.

Copyright

© 2023, Descovich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 983
    views
  • 194
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carlos P Descovich
  2. Kendall J Lough
  3. Akankshya Jena
  4. Jessica J Wu
  5. Jina Yom
  6. Danielle C Spitzer
  7. Manuela Uppalapati
  8. Katarzyna M Kedziora
  9. Scott E Williams
(2023)
AGS3 antagonizes LGN to balance oriented cell divisions and cell fate choices in mammalian epidermis
eLife 12:e80403.
https://doi.org/10.7554/eLife.80403

Share this article

https://doi.org/10.7554/eLife.80403

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.