Abstract

Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.

Data availability

For original data, please contact wuli@mail.tsinghua.edu.cnRNA sequencing data are available at NCBI GEO Datasets under accession GSE197207, methods were described. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197207Cut & Tag data are available at NCBI GEO Datasets under accession GSE197212, methods were described. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197212

The following data sets were generated

Article and author information

Author details

  1. Yijun Zhang

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tao Wu

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhimin He

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenlong Lai

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiangyi Shen

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7460-1066
  6. Jiaoyan Lv

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuanhao Wang

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Li Wu

    Institute for Immunology, Tsinghua University, Beijing, China
    For correspondence
    wuli@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2802-1220

Funding

Ministry of Science and Technology of the People's Republic of China (National Key Research Project 2019YFA0508502)

  • Li Wu

National Natural Science Foundation of China (31991174)

  • Li Wu

National Natural Science Foundation of China (31800769)

  • Zhimin He

Center for Life Sciences

  • Li Wu

Ministry of Science and Technology of the People's Republic of China (National Key Research Project 2022YFC2505001)

  • Li Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in strict accordance with the recommendations and approval of the Institutional Animal Care and Use Committee of Tsinghua University, protocol permit number: 18-WL2.

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 533
    views
  • 138
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yijun Zhang
  2. Tao Wu
  3. Zhimin He
  4. Wenlong Lai
  5. Xiangyi Shen
  6. Jiaoyan Lv
  7. Yuanhao Wang
  8. Li Wu
(2023)
Regulation of pDC Fate Determination by Histone Deacetylase 3
eLife 12:e80477.
https://doi.org/10.7554/eLife.80477

Share this article

https://doi.org/10.7554/eLife.80477

Further reading

    1. Cell Biology
    Jessica Y Chotiner, N Adrian Leu ... P Jeremy Wang
    Research Article

    Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.

    1. Cell Biology
    Johanna Odenwald, Bernardo Gabiatti ... Susanne Kramer
    Research Article

    Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an ‘all in one’ solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.