PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells

  1. Gina M LoMastro
  2. Chelsea G Drown
  3. Aubrey L Maryniak
  4. Cayla E Jewett
  5. Margaret A Strong
  6. Andrew Jon Holland  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States

Abstract

Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events.

Data availability

All data generated or analysed during this study are included in the Source Data file.

Article and author information

Author details

  1. Gina M LoMastro

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chelsea G Drown

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aubrey L Maryniak

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cayla E Jewett

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8406-0814
  5. Margaret A Strong

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew Jon Holland

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    aholland@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3728-6367

Funding

National Institute of General Medical Sciences (R01GM114119)

  • Andrew Jon Holland

National Institute of General Medical Sciences (R01GM133897)

  • Andrew Jon Holland

National Cancer Institute (R01CA266199)

  • Andrew Jon Holland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed and cared for in an AAALAC-accredited facility. All animal experiments were approved by the Johns Hopkins University Institute Animal Care and Use Committee (MO21M300). All studies employed a mixture of male and female mice and no differences between sexes were observed. Euthanasia was performed using isoflurane followed by cervical dislocation and every effort was made to minimize animal suffering.

Copyright

© 2022, LoMastro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,959
    views
  • 491
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gina M LoMastro
  2. Chelsea G Drown
  3. Aubrey L Maryniak
  4. Cayla E Jewett
  5. Margaret A Strong
  6. Andrew Jon Holland
(2022)
PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells
eLife 11:e80643.
https://doi.org/10.7554/eLife.80643

Share this article

https://doi.org/10.7554/eLife.80643

Further reading

    1. Cell Biology
    Melanie Lianne Engelfriet, Yanwu Guo ... Rafal Ciosk
    Research Article

    In nature, many animals respond to cold by entering hibernation, while in clinical settings, controlled cooling is used in transplantation and emergency medicine. However, the molecular mechanisms that enable cells to survive severe cold are still not fully understood. One key aspect of cold adaptation is the global downregulation of protein synthesis. Studying it in the nematode Caenorhabditis elegans, we find that the translation of most mRNAs continues in the cold, albeit at a slower rate, and propose that cold-specific gene expression is regulated primarily at the transcription level. Supporting this idea, we found that the transcription of certain cold-induced genes is linked to the activation of unfolded protein response (UPR) through the conserved IRE-1/XBP-1 signaling pathway. Our findings suggest that this pathway is triggered by cold-induced perturbations in proteins and lipids within the endoplasmic reticulum, and that its activation is beneficial for cold survival.

    1. Cell Biology
    2. Developmental Biology
    Qian Wang, Hongge Li ... Xin Zhang
    Research Article

    Fibroblast growth factor (FGF) signaling elicits multiple downstream pathways, most notably the Ras/MAPK cascade facilitated by the adaptor protein Grb2. However, the mechanism by which Grb2 is recruited to the FGF signaling complex remains unresolved. Here, we showed that genetic ablation of FGF signaling prevented murine lens induction by disrupting transcriptional regulation and actin cytoskeletal arrangements, which could be reproduced by deleting the juxtamembrane region of the FGF receptor and rescued by Kras activation. Conversely, mutations affecting the Frs2-binding site on the FGF receptor or the deletion of Frs2 and Shp2 primarily impact later stages of lens vesicle development involving lens fiber cell differentiation. Our study further revealed that the loss of Grb2 abolished MAPK signaling, resulting in a profound arrest of lens development. However, removing Grb2’s putative Shp2 dephosphorylation site (Y209) neither produced a detectable phenotype nor impaired MAPK signaling during lens development. Furthermore, the catalytically inactive Shp2 mutation (C459S) only modestly impaired FGF signaling, whereas replacing Shp2’s C-terminal phosphorylation sites (Y542/Y580) previously implicated in Grb2 binding only caused placental defects, perinatal lethality, and reduced lacrimal gland branching without impacting lens development, suggesting that Shp2 only partially mediates Grb2 recruitment. In contrast, we observed that FGF signaling is required for the phosphorylation of the Grb2-binding sites on Shc1 and the deletion of Shc1 exacerbates the lens vesicle defect caused by Frs2 and Shp2 deletion. These findings establish Shc1 as a critical collaborator with Frs2 and Shp2 in targeting Grb2 during FGF signaling.