Sweepstakes reproductive success via pervasive and recurrent selective sweeps

  1. Einar Árnason  Is a corresponding author
  2. Jere Koskela
  3. Katrín Halldórsdóttir
  4. Bjarki Eldon
  1. Institute of Life- and environmental Sciences, University of Iceland, Iceland
  2. Department of Organismal and Evolutionary Biology, Harvard University, United States
  3. Department of Statistics, University of Warwick, United Kingdom
  4. Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Germany
28 figures, 10 tables and 1 additional file

Figures

Figure 1 with 2 supplements
Neutrality test statistics and distribution of the neutrality index.

(a) Manhattan plots of Tajima’s D (Tajima, 1989) and Fay and Wu's H (Fay and Wu, 2000) showed mostly negative values at all chromosomes implying deviations from neutrality. Sliding window estimates …

Figure 1—figure supplement 1
Neutrality tests for Þistilfjörður population.

(a) Manhattan plots of Tajima’s D (Tajima, 1989) and Fay and Wu's H (Fay and Wu, 2000) for the Þistilfjörður population showed mostly negative values at all chromosomes implying deviations from …

Figure 1—figure supplement 2
Neutrality Index and violin plot of neutrality index across chromosomes.

(a) The distribution of -logNI (neutrality index) per chromosome (and (b) violin plots with quartiles) were heavier on the positive side implying more positive than negative selection.

Figure 2 with 1 supplement
Approximate Bayesian computation (ABC) joint estimation of parameters of the neutral Ξ-Beta(2-α,α) coalescent (random sweepstakes) and of population growth.

A kernel density estimator (Duong, 2022) for the joint ABC-posterior density of (α,β)ΘB. The parameter α determines the skewness of the offspring distribution in the neutral Ξ-Beta(2-α,α) coalescent …

Figure 2—figure supplement 1
Joint estimate of growth and coalescent parameter for other situations.

Approximate Bayesian computation (ABC) joint estimation of parameters of the neutral Ξ-Beta(2-α,α) coalescent (random sweepstakes) and of population growth. A kernel density estimator for the joint …

Figure 3 with 4 supplements
Fit of observations to models: the no-sweepstakes model, the random sweepstakes model, and the selective sweepstakes model.

(a) Mean observed site-frequency spectra for the 19 non-inversion chromosomes combined estimated with GL1 likelihood for the South/south-east populations (sample size n=68). Error bars of observed …

Figure 3—figure supplement 1
Site-frequency spectra and model fit for the replicate Þistilfjörður population.

(a) Site-frequency spectra of 19 non-inversion chromosomes compared to expectations of Kingman-, Ξ-Beta-, and Durrett–Schweinsberg (DS) coalescents for the Þistilfjörður population (sample size n=71).…

Figure 3—figure supplement 2
Site-frequency spectra polarized using a 100% consensus of three outgroup taxa.

(a) Site-frequency spectra otained using as outgroup sites that are in full agreement (100% consensus) among walleye pollock (Gch), Pacific cod (Gma), and Arctic cod (Bsa) compared with expectations …

Figure 3—figure supplement 3
Site-frequency spectra of transversions excluding transitions.

Site-frequency spectra and model fit of transversions of the 19 non-inversion chromosomes of the South/south-east population compared with expectations of of the Kingman, the Ξ-Beta, and the …

Figure 3—figure supplement 4
Site-frequency spectra excluding singletons and doubletons.

(a) Truncated and full site-frequency spectra compared. Singleton and the n-1 class and doubleton and the n-2 class were excluded and compared with the full site-frequency spectrum and with …

Figure 4 with 1 supplement
Deviations from fit to the random sweepstakes model and the selective sweepstakes model.

(a, b) Deviations of site frequencies from approximate maximum likelihood best-fit expectations of the neutral Ξ-Beta(2α,α) coalescent modelling random sweepstakes. Deviations of the mean site …

Figure 4—figure supplement 1
Deviations from fit to the random sweepstakes model and the selective sweepstakes model for GL2 genotype likelihood data.

(a, b) Deviations of the mean site frequencies of non-inversion chromosomes 3–6, 8–11, and 13–23 estimated with genotype likelihoods GL2 from approximate maximum likelihood best-fit expectations of …

Approximate Bayesian computation (ABC) estimation of parameters of the Durrett-Schweinsberg coalescent (Durrett and Schweinsberg, 2005) (the selective sweepstakes model) for various functional regions of the genome.

For each category from top to bottom the mean, the median, and the mode of the ABC-posterior distribution of the compound parameter cΘDS using site-frequency spectra computed from likelihood GL1 and …

Genomic scans of selective sweeps by two methods.

(a) Manhattan plots from detection of selective sweeps using RAiSD (Alachiotis and Pavlidis, 2018) and (b) by using OmegaPlus (Alachiotis et al., 2012). The ω statistic of OmegaPlus (b) measures …

Appendix 6—figure 1
Sampling localities at Iceland.

Sampling localities ranging from Vestmannaeyjar to Höfn on the south and south-east coast (blue circles, n=68) and Þistilfjörður in the north-east (red circles, n=71) on a map of Iceland. Depth contours …

Appendix 6—figure 2
Neutrality test statistics in sliding windows across all chromosomes for GL2 estimates.

(a, b) Manhattan plots of Tajima’s D (Tajima, 1989), Fu and Li’s D (Fu and Li, 1993), Fay and Wu’s H (Fay and Wu, 2000), and Zeng’s E (Zeng et al., 2006) for the South/south-east population and the …

Appendix 6—figure 3
The random sweepstakes model.

(a, b) Observed site-frequency spectra of non-inversion chromosomes and expectations of the Ξ-Beta(2α,α) coalescent (the random sweepstakes model) for the South/south-east population (sample size n=68) …

Appendix 6—figure 4
Piecewise comparison of expectations of the Λ-Beta(2α,α) coalescent and deviations from fit.

The observed mean site-frequency spectrum of the non-inversion chromosomes 3–6, 8–11, and 13–23 polarized with Gma as outgroup and estimated under genotype likelihoods GL1 and GL2 and expected …

Appendix 6—figure 5
Fit to the selective sweepstakes model for GL2 estimated site-frequency spectra.

(a, b) Mean observed site-frequency spectra for the 19 non-inversion chromosomes combined estimated with GL2 likelihood for the South/south-east (sample size n=68) and Þistilfjörður populations …

Appendix 6—figure 6
Decay of linkage disequilibrium with distance: observed and under an extension of the Durrett–Schweinsberg model.

(a) Observed linkage disequilibrium (LD), measured as r2 , with distance in kb (kilobase). Non-inversion chromosomes from the South/south-east population as an example. LD decays rapidly to …

Appendix 6—figure 7
Approximate Bayesian computation (ABC) estimation of parameters of the Durrett–Schweinsberg coalescent (Durrett and Schweinsberg, 2005).

(a–d) ABC-posterior densities of the compound parameter cΘDS using site-frequency spectra computed from likelihood GL1 (a, c) and GL2 (b, d) for the South/south-east and Þistilfjörður populations, …

Appendix 6—figure 8
Principal components based genomic scan of selection for South/south-east (top) and Þistilfjörður (bottom) populations.

Regions of 500 kb on either side of peaks exceeding -log10p4 were excluded to define regions of no selection for analysis in Figures 3 and 5.

Appendix 6—figure 9
Observed site-frequency spectra compared to SLiM simulated site-frequency spectra under no-sweepstakes reproduction and random sweepstakes reproduction with selection.

Forward simulation using SLiM (Haller and Messer, 2019) of negative (background) selection and positive selection with variable dominance and with no-sweepstakes and random sweepstakes models of …

Appendix 6—figure 10
Observed site-frequency spectra compared to msprime simulated site-frequency spectra under Kingman coalescent with recurrent selective sweeps.

Backwards simulation using msprime (Baumdicker et al., 2021). (a, b) The standard Kingman coalescent model interrupted by randomly occurring hard sweeps. Each sweep with a selection coefficient s

Appendix 6—figure 11
Estimated demographic history and frequency spectra from simulated demographic scenarios under the Kingman coalescent.

(top, left and right) Demographic history estimated with the stairway plot method (Liu and Fu, 2015; Liu and Fu, 2020) from the site-frequency spectra of the non-inversion chromosomes estimated with …

Appendix 6—figure 12
Stairway plots of demographic history of the populations of GL2 likelihood data.

Demographic history estimated from the site-frequency spectra of the non-inversion chromosomes based on GL2 likelihoods for the South/south-east (top) and the Þistilfjörður (bottom) populations, …

Appendix 6—figure 13
Groups from principal component analysis (PCA), conjectured as cryptic population structure, and observed site-frequency spectra compared to coalescent expectations.

(a, d, g, j) Groups revealed by PCA of variation at inversion chromosomes Chr01, Chr02, Chr07, and Chr12, respectively, conjectured to represent cryptic population structure that should extend to …

Appendix 6—figure 14
Population structure, isolation with migration, and population growth under the Kingman coalescent.

(a–i) Simulations using msprime (Kelleher et al., 2016; Baumdicker et al., 2021) of the effects of a mixed sample of two divergent populations evolving under the Kingman coalescent (no sweepstakes …

Appendix 6—figure 15
Population structure, isolation with migration, and population growth under the Xi-Beta coalescent.

(a-i) Simulations using msprime (Kelleher et al., 2016; Baumdicker et al., 2021) of the effects of a mixed sample of two divergent populations evolving under the Ξ-Beta(2-α,α) coalescent (the random …

Appendix 6—figure 16
Estimated site-frequency spectra with a leave-one-out approach.

Estimated site-frequency spectra for chromosome 4 of 67 individuals leaving out each individual in turn from the 68 individuals of the South/south-east population. Circles are site-frequency …

Appendix 6—figure 17
Observed site-frequency spectra at inversion chromosomes and coalescent expectations for the South/south-east population.

(a–d) Observed site-frequency spectra estimated with GL1 for the four inversion chromosomes, chromosome 1 (Chr01), chromosome 2 (Chr02), chromosome 7 (Chr07), and chromosome 12 (Chr12), respectively …

Appendix 6—figure 18
Observed site-frequency spectra at inversion chromosomes and coalescent expectations for the Þistilfjörður population.

(a–d) Observed site-frequency spectra estimated with GL1 for the four inversion chromosomes, chromosome 1 (Chr01), chromosome 2 (Chr02), chromosome 7 (Chr07), and chromosome 12 (Chr12), respectively …

Appendix 6—figure 19
Observed site-frequency spectra compared to SLiM forward simulated site-frequency spectra based on demographic scenarios with and without selective sweeps and with background selection and recurrent bottlenecks.

Forward simulation using SLiM (Haller and Messer, 2019). (a–c) Each scenario has two islands of initial population size 300. Both islands undergo exponential growth at per-generation rate g until a …

Appendix 6—figure 20
Neighbour joining tree of gadid taxa.

Based on p-distance (nucleotide substitutions per nucleotide site) of whole genome among the gadid taxa Atlantic cod (Gadus morhua, Gmo), walleye pollock (G. chalcogramma, Gch), Pacific cod (G. …

Appendix 6—figure 21
Schematic illustration of the three coalescent models, Kingman (no sweepstakes), Xi-Beta (random sweepstakes), and DS (selective sweepstakes).

(a) In each generation, any given pair of diploid parents in a low-fecundity population produces only a small number of offspring, a no-sweepstakes scenario. At most two ancestral lineages (shown as …

Appendix 6—figure 22
Relative diversity and the compound parameter c along chromosome 4.

The compound parameter c=δs2/γ of the Durrett–Schweinsberg model measures the rate of selective sweeps (δ) times the squared selection coefficient (s2) of the beneficial mutation over the recombination …

Tables

Appendix 7—table 1
Diversity and neutrality test statistics for the South/south-east population.

Watterson’s estimator of the population scaled mutation rate per nucleotide site θW, the pairwise nucleotide diversity per nucleotide site θπ, Tajima’s DT, Fu and Li’s DF, and number of nucleotide …

GL1 likelihoodGL2 likelihood
θWθπDTDFnSitesθWθπDTDFnSites
Chr010.00460.0024−1.64−5.77183324220.00560.0025−1.84−6.7118332093
Chr020.00500.0020−1.98−6.00158283470.00600.0022−2.11−6.8415828079
Chr030.00530.0020−2.09−6.22202027690.00630.0021−2.21−6.9820202435
Chr040.00540.0020−2.08−6.03225842800.00650.0022−2.19−6.7922583924
Chr050.00530.0020−2.10−6.22155425620.00640.0021−2.22−6.9915542313
Chr060.00520.0019−2.11−6.33177209890.00620.0021−2.22−7.0917720709
Chr070.00560.0022−2.01−5.88210800020.00660.0024−2.13−6.6421079620
Chr080.00540.0020−2.09−6.09183538830.00650.0022−2.21−6.8518353624
Chr090.00530.0019−2.13−6.42181957280.00630.0021−2.25−7.1618195437
Chr100.00510.0019−2.09−6.27174507290.00610.0020−2.21−7.0617450432
Chr110.00500.0018−2.14−6.54201388930.00590.0019−2.26−7.3220138619
Chr120.00430.0016−2.14−6.32194488270.00530.0017−2.26−7.1819448580
Chr130.00490.0018−2.14−6.38186515750.00590.0019−2.26−7.1818651311
Chr140.00530.0019−2.14−6.34207048940.00630.0020−2.25−7.0920704623
Chr150.00540.0019−2.17−6.41181002130.00640.0020−2.27−7.1518099944
Chr160.00510.0019−2.09−6.13222331780.00610.0021−2.21−6.9322232862
Chr170.00530.0020−2.06−5.99118138090.00630.0022−2.18−6.7811813609
Chr180.00530.0019−2.11−6.23159315580.00630.0021−2.23−7.0115931312
Chr190.00550.0020−2.10−6.23138583020.00650.0022−2.21−6.9813858066
Chr200.00500.0018−2.15−6.56163711680.00590.0019−2.27−7.3316370967
Chr210.00520.0019−2.10−6.29144402200.00620.0021−2.22−7.0714440024
Chr220.00540.0020−2.08−6.12138384400.00650.0022−2.19−6.8913838214
Chr230.00520.0020−2.08−6.27146987190.00620.0021−2.20−7.0514698473
All0.00520.0019−2.08−6.22176313700.00620.0021−2.20−7.0017631099
Appendix 7—table 2
Diversity and neutrality test statistics for the Þistilfjörður population.

θW Watterson’s estimator of the population scaled mutation rate per nucleotide site, θπ the pairwise nucleotide diversity per nucleotide site, Tajima’s DT, Fu and Li’s DF, and number of nucleotide …

GL1 likelihoodGL2 likelihood
θWθπDTDFnSitesθWθπDTDFnSites
Chr010.00680.0037−1.51−5.99161593620.00900.0040−1.84−7.5516159148
Chr020.00690.0030−1.86−6.18143066270.00920.0034−2.10−7.6514306351
Chr030.00730.0029−1.99−6.38182838150.00960.0033−2.19−7.7618283555
Chr040.00740.0030−1.97−6.14204354430.00970.0034−2.17−7.5220435122
Chr050.00730.0029−2.00−6.36139339820.00960.0032−2.20−7.7413933752
Chr060.00720.0028−2.00−6.46160487680.00940.0032−2.21−7.8416048531
Chr070.00760.0034−1.83−6.06190082700.00990.0038−2.05−7.4619007926
Chr080.00740.0030−1.98−6.20165591060.00970.0033−2.18−7.5916558861
Chr090.00730.0028−2.03−6.59163814980.00960.0032−2.23−7.9316381249
Chr100.00700.0028−1.98−6.42157898380.00930.0032−2.19−7.8315789584
Chr110.00690.0026−2.04−6.73182110810.00910.0029−2.24−8.1218210846
Chr120.00610.0024−2.03−6.52175973470.00820.0027−2.24−8.0717597135
Chr130.00680.0026−2.04−6.58168468920.00900.0029−2.24−8.0116846697
Chr140.00730.0028−2.04−6.52186998770.00950.0031−2.23−7.8918699625
Chr150.00740.0028−2.06−6.54163493270.00970.0031−2.25−7.8616349118
Chr160.00700.0028−1.98−6.27202594940.00920.0032−2.19−7.7120259231
Chr170.00720.0030−1.93−6.09106673960.00950.0033−2.15−7.5210667225
Chr180.00720.0029−2.00−6.39143054790.00950.0032−2.21−7.7914305261
Chr190.00750.0030−1.98−6.33124652230.00980.0034−2.18−7.6812465024
Chr200.00690.0026−2.06−6.73148291910.00910.0029−2.25−8.1114829009
Chr210.00710.0029−1.99−6.43130140090.00940.0032−2.20−7.8313013813
Chr220.00740.0030−1.97−6.30124070340.00970.0034−2.17−7.7012406815
Chr230.00720.0029−1.97−6.40132730110.00940.0032−2.18−7.8113272801
All0.00710.0029−1.97−6.37159057420.00940.0032−2.18−7.7815905508
Appendix 7—table 3
Demographic statistics, correction factor, C, and generation length, G, of female component of Atlantic cod in Iceland.

Age-specific survival rate, li, was based, respectively, on the average and the 1948–1952 and the 1963–1967 instantaneous mortality estimated from tagging experiments of Icelandic cod (Jónsson, 1996)…

AgeAge’48–’52’63–’67GMMay
classl¯ililibi×106bi×106
011.00001.00001.00000.000
120.33960.49660.23690.000
230.11530.24660.05610.000
340.03920.12250.01330.380.52
450.01330.06080.00320.620.78
560.00450.03020.00071.011.15
670.00150.01500.00021.591.67
780.00050.00740.00002.372.31
890.00020.00370.00003.283.03
9100.00010.00180.00004.243.73
10110.00000.00090.00005.304.48
11120.00000.00050.00006.415.24
12130.00000.00020.00007.686.07
13140.00000.00010.00008.796.78
14150.00000.00010.000010.427.79
C10.57.917.620.0
G5.16.34.64.6
C/G2.11.33.83.8
Appendix 7—table 4
Genetic divergence between the Atlantic cod and walleye pollock sister taxa and rate of evolution.

The p-distance, the proportion of sites per nucleotide site that differ between the sister taxa Atlantic cod and walleye pollock (Appendix 6—figure 20) estimated with ngsDist (Vieira et al., 2015) …

Chromosomep per siteμ=p per site per yearNumber of substitutions per yearNumber of years per substitutionNumber of sites
Chr010.005047.21×10-100.0224530875876
Chr020.005007.14×10-100.0214928732775
Chr030.004927.03×10-100.0224630954429
Chr040.004907.00×10-100.0313343798135
Chr050.005127.31×10-100.0185425300426
Chr060.005087.25×10-100.0205027762770
Chr070.005117.29×10-100.0254034137969
Chr080.004977.11×10-100.0214729710654
Chr090.005187.40×10-100.0205126487948
Chr100.005137.33×10-100.0205027234273
Chr110.005057.22×10-100.0224530713045
Chr120.004957.08×10-100.0224630948897
Chr130.005237.47×10-100.0224628829685
Chr140.005087.26×10-100.0214729586942
Chr150.004997.13×10-100.0204928657694
Chr160.004987.12×10-100.0254034794352
Chr170.005027.16×10-100.0166421723002
Chr180.005137.33×10-100.0185524902675
Chr190.005297.56×10-100.0176022015597
Chr200.005067.23×10-100.0185624843429
Chr210.005217.45×10-100.0176022358821
Chr220.005167.37×10-100.0185723744039
Chr230.005297.56×10-100.0195225242006
Average0.005087.26×10-100.0214928406758
Genome0.005077.25×10-100.4742653355439
Appendix 7—table 5
A list of key terms and a brief description.
TermDescription
High fecundityThe ability of organisms (e.g. broadcast spawners) to produce huge numbers of offspring, or on the order of the population size
Sweepstakes reproductionHigh variance and high skew in the distribution of number of offspring, where most of the time individuals produce small (relative to the population size) number of offspring, but occasionally a few individuals contribute the bulk of the offspring forming a new generation of reproducing individuals
Random sweepstakesA chance matching of reproduction in a highly fecund population with favorable environmental conditions; random sweepstakes is one example of a mechanism turning high fecundity into sweepstakes reproduction
Selective sweepstakesA mechanism turning high fecundity into sweepstakes reproduction, in which juveniles pass through selective filters during their development, resulting in highly skewed offspring distribution
Moran modelA population model of genetic reproduction, in which a single random individual produces one offspring replacing another individual that perishes to keep the population size constant
GenealogyThe ancestral relations of a sample of gene copies (see Appendix 6—figure 21)
CoalescentA probabilistic model of the random ancestral relations of a hypothetical sample of gene copies
Multiple-merger coalescentA coalescent process in which a random number of ancestral lineages merges each time (see Appendix 6—figure 21)
Ξ-Beta (2-α,α)-coalescentA multiple-merger coalescent derived from a model of random sweepstakes
Durrett–Schweinsberg modelA model of recurrent selective sweeps of a new beneficial mutation each time approximating selective sweepstakes
Durrett–Schweinsberg coalescentA coalescent model for the genealogy at a single site linked to a site experiencing beneficial mutation; during a sweep some lineages of the neutral site may escape a sweep through recombination (see Appendix 6—figure 21)
Appendix 7—table 6
Approximate Bayesian computation (ABC) priors of parameter for various analysis.
ParameterABC prior
α for the Beta (2-α,α)-coalescentUniform between 1.01 and 1.99
β, the growth rate for the Beta (2-α,α)-coalescent with population growthImproper, uniform prior on the whole positive half-line
c for the single-locus DS modelImproper, uniform prior on the whole positive half-line
c for the DS model with recombinationUniform between 10 and 25 (to force consistency with the posterior in the single-locus analysis)
γ/s, the ratio of the recombination rate and the selection coefficient, in the DS model with recombinationUniform between 0 and 10,000
θ, the mutation rate in the DS model with recombinationUniform between 0 and 10,000
Fraction of whole-chromosome sweeps in the DS model with recombinationUniform between 0 and 1
Appendix 7—table 7
Genetic divergence between the Atlantic cod and walleye pollock sister taxa and rate of evolution from GL1 estimated site-frequency spectra.

The site-frequency spectrum of the South/south-east population of Atlantic cod estimated with ANGSD and genotype likelihood GL1 (Korneliussen et al., 2014), using walleye pollock (Gch) as outgroup …

ChromosomeAll sites,LInvariant sites,ISegregating sites,SFixed sites,FSubstitutions per yearYears per substitution
Chr0118350418177367284682471454430.04224
Chr0215850624152692224374401439620.04124
Chr0320231166194673615920441717610.04920
Chr0422623179217425676738372067750.05917
Chr0515557754149632904578521366120.03926
Chr0617738562170905775067271412580.04025
Chr0721107906202821696457381800000.05119
Chr0818381649176813365490231512900.04323
Chr0918212083175280655334481505710.04323
Chr1017472145168298374914081508990.04323
Chr1120157683194391025504661681150.04821
Chr1219475709188383524652191721380.04920
Chr1318669907180022885042781633410.04721
Chr1420723905199463976051011724070.04920
Chr1518123369174350245388321495130.04323
Chr1622268819214605876245201837120.05219
Chr1711831346113764613449211099640.03132
Chr1815955850153487664618401452440.04124
Chr1913869827133145084213411339780.03826
Chr2016390870158075854485501347350.03826
Chr2114455156139119664142471289430.03727
Chr2213854159133149724139651252220.03628
Chr2314714440141545404244961354030.03926
Mean17652892169974655031971522300.04323
Genome4060165263909417011157354035012861.0001
Appendix 7—table 8
Genetic divergence between the Atlantic cod and walleye pollock sister taxa and rate of evolution from GL2 estimated site-frequency spectra.

The site-frequency spectrum of the South/south-east population of Atlantic cod estimated with ANGSD and genotype likelihood GL2 (Korneliussen et al., 2014), using walleye pollock (Gch) as outgroup …

ChromosomeAll sites,LInvariant sites,ISegregating sites,SFixed sites,FSubstitutions per yearYears per substitution
Chr0118350189176450665612971438250.04124
Chr0215850406151848855233681421530.04125
Chr0320230947193564887049861694730.04821
Chr0422622912216141918049942037260.05817
Chr0515557576148779185447501349080.03926
Chr0617738379169955206034451394140.04025
Chr0721107635201648137655331772890.05120
Chr0818381450175789296533571491640.04323
Chr0918211894174299016332821487120.04224
Chr1017471932167367605861771489950.04323
Chr1120157484193331406582991660450.04721
Chr1219475530187398065659491697750.04921
Chr1318669720179049836033041614330.04622
Chr1420723717198358867174411703900.04921
Chr1518123186173347826408241475800.04224
Chr1622268589213410707462711812480.05219
Chr1711831198113099884128311083790.03132
Chr1815955648152615695506771434020.04124
Chr1913869662132377974995071323590.03826
Chr2016390728157212555363971330770.03826
Chr2114454994138332804943171273970.03627
Chr2213853971132378234926611234870.03528
Chr2314714263140745175061401336060.03826
Mean17652696169021906002521502540.04323
Genome4060120103887503671380580734558370.9871
Appendix 7—table 9
Hardy–Weinberg test of PCA groups as inversion genotypes.

Observed O and Hardy–Weinberg expected E haplotype frequencies, allele frequency p, X2 test statistic distributed as χ2, and probability P of test statistic. Arranged by chromsome and by …

ChromosomePCA groupSouth/south-eastÞistilfjörður
OEpX2POEpX2P
Chr01AA77.440.330.060.803128.520.631.600.21
Chr01AB3130.112832.96
Chr01BB3030.44129.52
Chr02CC4130.760.760.690.413639.560.754.990.03
Chr02CD2224.473426.87
Chr02DD53.7614.56
Chr07EE4848.620.850.330.564243.380.780.920.36
Chr07EF1917.762724.23
Chr07FF11.6223.38
Chr12GG6261.130.960.140.706261.350.931.380.24
Chr12GH65.7489.30
Chr12HH00.1310.35
Appendix 7—table 10
Genetic diversity and background selection simulations.

The genetic variation accumulated under different cases in SLiM (Haller and Messer, 2019) simulations of background selection (Appendix 6—figure 19d). In all cases a population of size N=105 evolves …

CaseAverage number of segregating sitesAverageΠAverage π per seg site
A8934.51257.00.14
B7765.2872.20.11
C15568.82248.70.14
D9896.61574.00.16
E13001.81426.90.11
F18857.73370.90.18

Additional files

Download links