Reducing societal impacts of SARS-CoV-2 interventions through subnational implementation

  1. Mark M Dekker
  2. Luc E Coffeng
  3. Frank P Pijpers
  4. Debabrata Panja  Is a corresponding author
  5. Sake J de Vlas
  1. Utrecht University, Netherlands
  2. Erasmus MC, Netherlands
  3. University of Amsterdam, Netherlands

Abstract

To curb the initial spread of SARS-CoV-2, many countries relied on nation-wide implementation of non-pharmaceutical intervention measures, resulting in substantial socio-economic impacts. Potentially, subnational implementations might have had less of a societal impact, but comparable epidemiological impact. Here, using the first COVID-19 wave in the Netherlands as a case in point, we address this issue by developing a high-resolution analysis framework that uses a demographically-stratified population and a spatially-explicit, dynamic, individual contact-pattern based epidemiology, calibrated to hospital admissions data and mobility trends extracted from mobile phone signals and Google. We demonstrate how a subnational approach could achieve similar level of epidemiological control in terms of hospital admissions, while some parts of the country could stay open for a longer period. Our framework is exportable to other countries and settings, and may be used to develop policies on subnational approach as a better strategic choice for controlling future epidemics.

Data availability

Data associated with mobility and mixing reductions (Google mobility and PIENTER) [17, 34], age-stratified mixing matrices used in the analysis (POLYMOD) [9], and hospital admission data (NICE) publicly available as described in SI A.5, have been made available at the Data Repository https://osf.io/muj4q/. All analysis codes have been made available at https://github.com/MarkMDekker/covid_intervention_evaluation. Our analysis also uses mobility information as input. This dataset is owned by a commercial party (Mezuro) and can therefore not be made public. For the purpose of enabling readers to run our codes and obtaining comparable results, we have made synthetic mobility data available, also at the Data Repository https://osf.io/muj4q/. This synthetic data has been generated using a gravity model. For frequent travels, this is entirely standard, for infrequent visits square root of the distance is used in the numerator. The prefactor G in the standard gravity model is chosen as 0.5 to account for the double counting due to return journeys. For infrequent visits, mostly weekend trips, we have used G = 1/7. Request for the actual mobility data can be sent to info@mezuro.com as a proposal. Access to the data may require payment, and will certainly be subject to vetting related to privacy issues by GDPR (General Data Protection Regulation).

Article and author information

Author details

  1. Mark M Dekker

    Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Luc E Coffeng

    Department of Public Health, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Frank P Pijpers

    Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7572-9435
  4. Debabrata Panja

    Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands
    For correspondence
    d.panja@uu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2141-9735
  5. Sake J de Vlas

    Department of Public Health, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1830-5668

Funding

ZonMw (10430022010001)

  • Sake J de Vlas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben S Cooper, University of Oxford, United Kingdom

Publication history

  1. Preprint posted: March 31, 2022 (view preprint)
  2. Received: June 6, 2022
  3. Accepted: February 20, 2023
  4. Accepted Manuscript published: March 7, 2023 (version 1)
  5. Version of Record published: March 17, 2023 (version 2)

Copyright

© 2023, Dekker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 653
    Page views
  • 106
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark M Dekker
  2. Luc E Coffeng
  3. Frank P Pijpers
  4. Debabrata Panja
  5. Sake J de Vlas
(2023)
Reducing societal impacts of SARS-CoV-2 interventions through subnational implementation
eLife 12:e80819.
https://doi.org/10.7554/eLife.80819

Further reading

    1. Epidemiology and Global Health
    Peter Bruun-Rasmussen, Morten Hanefeld Dziegiel ... Søren Brunak
    Research Article Updated

    Background:

    Whether natural selection may have attributed to the observed blood group frequency differences between populations remains debatable. The ABO system has been associated with several diseases and recently also with susceptibility to COVID-19 infection. Associative studies of the RhD system and diseases are sparser. A large disease-wide risk analysis may further elucidate the relationship between the ABO/RhD blood groups and disease incidence.

    Methods:

    We performed a systematic log-linear quasi-Poisson regression analysis of the ABO/RhD blood groups across 1,312 phecode diagnoses. Unlike prior studies, we determined the incidence rate ratio for each individual ABO blood group relative to all other ABO blood groups as opposed to using blood group O as the reference. Moreover, we used up to 41 years of nationwide Danish follow-up data, and a disease categorization scheme specifically developed for diagnosis-wide analysis. Further, we determined associations between the ABO/RhD blood groups and the age at the first diagnosis. Estimates were adjusted for multiple testing.

    Results:

    The retrospective cohort included 482,914 Danish patients (60.4% females). The incidence rate ratios (IRRs) of 101 phecodes were found statistically significant between the ABO blood groups, while the IRRs of 28 phecodes were found statistically significant for the RhD blood group. The associations included cancers and musculoskeletal-, genitourinary-, endocrinal-, infectious-, cardiovascular-, and gastrointestinal diseases.

    Conclusions:

    We found associations of disease-wide susceptibility differences between the blood groups of the ABO and RhD systems, including cancer of the tongue, monocytic leukemia, cervical cancer, osteoarthrosis, asthma, and HIV- and hepatitis B infection. We found marginal evidence of associations between the blood groups and the age at first diagnosis.

    Funding:

    Novo Nordisk Foundation and the Innovation Fund Denmark

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Peh Joo Ho, Iain BeeHuat Tan ... Jingmei Li
    Research Article

    Background: To evaluate the utility of polygenic risk scores (PRS) in identifying high-risk individuals, different publicly available PRS for breast (n=85), prostate (n=37), colorectal (n=22) and lung cancers (n=11) were examined in a prospective study of 21,694 Chinese adults.

    Methods: We constructed PRS using weights curated in the online PGS Catalog. PRS performance was evaluated by distribution, discrimination, predictive ability, and calibration. Hazard ratios (HR) and corresponding confidence intervals [CI] of the common cancers after 20 years of follow-up were estimated using Cox proportional hazard models for different levels of PRS.

    Results: A total of 495 breast, 308 prostate, 332 female-colorectal, 409 male-colorectal, 181 female-lung and 381 male-lung incident cancers were identified. The area under receiver operating characteristic curve for the best performing site-specific PRS were 0.61 (PGS000873, breast), 0.70 (PGS00662, prostate), 0.65 (PGS000055, female-colorectal), 0.60 (PGS000734, male-colorectal) and 0.56 (PGS000721, female-lung), and 0.58 (PGS000070, male-lung), respectively. Compared to the middle quintile, individuals in the highest cancer-specific PRS quintile were 64% more likely to develop cancers of the breast, prostate, and colorectal. For lung cancer, the lowest cancer-specific PRS quintile was associated with 28-34% decreased risk compared to the middle quintile. In contrast, the hazard ratios observed for quintiles 4 (female-lung: 0.95 [0.61-1.47]; male-lung: 1.14 [0.82-1.57]) and 5 (female-lung: 0.95 [0.61-1.47]) were not significantly different from that for the middle quintile.

    Conclusions: Site-specific PRSs can stratify the risk of developing breast, prostate, and colorectal cancers in this East Asian population. Appropriate correction factors may be required to improve calibration.

    Funding This work is supported by the National Research Foundation Singapore (NRF-NRFF2017-02), PRECISION Health Research, Singapore (PRECISE) and the Agency for Science, Technology and Research (A*STAR). WP Koh was supported by National Medical Research Council, Singapore (NMRC/CSA/0055/2013). CC Khor was supported by National Research Foundation Singapore (NRF-NRFI2018-01). Rajkumar Dorajoo received a grant from the Agency for Science, Technology and Research Career Development Award (A*STAR CDA - 202D8090), and from Ministry of Health Healthy Longevity Catalyst Award (HLCA20Jan-0022). The Singapore Chinese Health Study was supported by grants from the National Medical Research Council, Singapore (NMRC/CIRG/1456/2016) and the U.S. National Institutes of Health [NIH] (R01 CA144034 and UM1 CA182876).