Towards a more informative representation of the fetal-neonatal brain connectome using variational autoencoder
Abstract
Recent advances in functional magnetic resonance imaging (fMRI) have helped elucidate previously inaccessible trajectories of early-life prenatal and neonatal brain development. To date, the interpretation of fetal-neonatal fMRI data has relied on linear analytic models, akin to adult neuroimaging data. However, unlike the adult brain, the fetal and newborn brain develops extraordinarily rapidly, far outpacing any other brain development period across the lifespan. Consequently, conventional linear computational models may not adequately capture these accelerated and complex neurodevelopmental trajectories during this critical period of brain development along the prenatal-neonatal continuum. To obtain a nuanced understanding of fetal-neonatal brain development, including non-linear growth, for the first time, we developed quantitative, systems-wide representations of brain activity in a large sample (>500) of fetuses, preterm, and full-term neonates using an unsupervised deep generative model called Variational Autoencoder (VAE), a model previously shown to be superior to linear models in representing complex resting state data in healthy adults. Here, we demonstrated that non-linear brain features, i.e., latent variables, derived with the VAE pretrained on rsfMRI of human adults, carried important individual neural signatures, leading to improved representation of prenatal-neonatal brain maturational patterns and more accurate and stable age prediction in the neonate cohort compared to linear models. Using the VAE decoder, we also revealed distinct functional brain networks spanning the sensory and default mode networks. Using the VAE, we are able to reliably capture and quantify complex, non-linear fetal-neonatal functional neural connectivity. This will lay the critical foundation for detailed mapping of healthy and aberrant functional brain signatures that have their origins in fetal life.
Data availability
Data from the Children's National cohort (or DBI dataset) are accessible here: https://doi.org/10.5061/dryad.cvdncjt6n. The Developing Human Connectome Project dataset (dHCP dataset) are here: http://www.developingconnectome.org. The source code, model and documentation for the VAE described in this paper are publicly available at https://github.com/libilab/rsfMRI-VAE.
-
Towards A More Informative Representation of the Fetal-Neonatal Brain Connectome using Variational AutoencoderDryad Digital Repository, doi:10.5061/dryad.cvdncjt6n.
Article and author information
Author details
Funding
National Heart, Lung, and Blood Institute (R01 HL116585-01)
- Catherine Limperopoulos
Canadian Institute of Health Research (MOP-81116)
- Catherine Limperopoulos
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All experiments were conducted under the regulations and guidelines approved by the Institutional Review Board (IRB) of Children's National (Study ID: Pro00013618); written informed consent was obtained from each pregnant woman who participated in the study.
Copyright
© 2023, Kim et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 740
- views
-
- 129
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.
-
- Neuroscience
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.