Ubiquitination drives COPI priming and Golgi SNARE localization

Abstract

Deciphering mechanisms controlling SNARE localization within the Golgi complex is crucial to understanding protein trafficking patterns within the secretory pathway. SNAREs are also thought to prime COPI assembly to ensure incorporation of these essential cargoes into vesicles, but the regulation of these events is poorly understood. Here we report roles for ubiquitin recognition by COPI in SNARE trafficking and in stabilizing interactions between Arf, COPI, and Golgi SNAREs in Saccharomyces cerevisiae. The ability of COPI to bind ubiquitin, but not the dilysine motif, through its N-terminal WD repeat domain of β'COP or through an unrelated ubiquitin-binding domain (UBD) is essential for the proper localization of Golgi SNAREs Bet1 and Gos1. We find that COPI, the ArfGAP Glo3 and multiple Golgi SNAREs are ubiquitinated. Notably, the binding of Arf and COPI to Gos1 is markedly enhanced by ubiquitination of these components. Glo3 is proposed to prime COPI-SNARE interactions; however, Glo3 is not enriched in the ubiquitin-stabilized SNARE-Arf-COPI complex but is instead enriched with COPI complexes that lack SNAREs. These results support a new model for how posttranslational modifications drive COPI priming events crucial for Golgi SNARE localization.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures.

Article and author information

Author details

  1. Swapneeta S Date

    Department of Biological Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4086-110X
  2. Peng Xu

    Department of Biological Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7103-3692
  3. Nathaniel L Hepowit

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas S Diab

    Department of Biological Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jordan Best

    Department of Biological Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Boyang Xie

    Department of Biological Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2829-9254
  7. Jiale Du

    Department of Chemistry, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric R Strieter

    Department of Chemistry, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3447-3669
  9. Lauren P Jackson

    Department of Biological Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3705-6126
  10. Jason A MacGurn

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5063-259X
  11. Todd R Graham

    Department of Biological Sciences, Vanderbilt University, Nashville, United States
    For correspondence
    tr.graham@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3256-2126

Funding

National Institutes of Health (R35GM144123-01)

  • Todd R Graham

National Institutes of Health (1R35GM119525)

  • Lauren P Jackson

National Institutes of Health (R35GM144112)

  • Jason A MacGurn

Pew Charitable Trusts

  • Lauren P Jackson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Date et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,824
    views
  • 462
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Swapneeta S Date
  2. Peng Xu
  3. Nathaniel L Hepowit
  4. Nicholas S Diab
  5. Jordan Best
  6. Boyang Xie
  7. Jiale Du
  8. Eric R Strieter
  9. Lauren P Jackson
  10. Jason A MacGurn
  11. Todd R Graham
(2022)
Ubiquitination drives COPI priming and Golgi SNARE localization
eLife 11:e80911.
https://doi.org/10.7554/eLife.80911

Share this article

https://doi.org/10.7554/eLife.80911

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.