Abstract

Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.

Data availability

Data and material availability: Proteomics datasets have been deposited into the PRIDE database (identifier PXD031716), and metabolomics datasets have been deposited into Metabolomics Workbench (identifiers 3426, 3428, 3429). All other data are provided within the manuscript and supplementary files.

The following data sets were generated

Article and author information

Author details

  1. Nicholas P Lesner

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Xun Wang

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Zhenkang Chen

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7919-5546
  4. Anderson Frank

    Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Cameron Menezes

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-8099
  6. Sara House

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Spencer D Shelton

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1236-5317
  8. Andrew Lemoff

    Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4943-0170
  9. David G McFadden

    Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  10. Janaka Wanaspura

    Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  11. Ralph J DeBerardinis

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Ralph J DeBerardinis, is an advisor to Agios Pharmaceuticals.
  12. Prashant Mishra

    Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    prashant.mishra@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2223-1742

Funding

United Mitochondrial Disease Foundation

  • Prashant Mishra

National Institutes of Health (1DP2ES030449-01)

  • Prashant Mishra

National Institutes of Health (1R01AR073217-01)

  • Prashant Mishra

National Institutes of Health (1F31-DK122676)

  • Nicholas P Lesner

Moody Medical Research Institute

  • Prashant Mishra

National Science Foundation (GRFP 2019281210)

  • Spencer D Shelton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) at University of Texas Southwestern Medical Center (protocol 102654).

Copyright

© 2022, Lesner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,534
    views
  • 842
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas P Lesner
  2. Xun Wang
  3. Zhenkang Chen
  4. Anderson Frank
  5. Cameron Menezes
  6. Sara House
  7. Spencer D Shelton
  8. Andrew Lemoff
  9. David G McFadden
  10. Janaka Wanaspura
  11. Ralph J DeBerardinis
  12. Prashant Mishra
(2022)
Differential requirements for mitochondrial electron transport chain components in the adult murine liver
eLife 11:e80919.
https://doi.org/10.7554/eLife.80919

Share this article

https://doi.org/10.7554/eLife.80919

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.