A remarkable adaptive paradigm of heart performance and protection emerges in response to the constitutive challenge of marked cardiac-specific overexpression of adenylyl cyclase type 8

Abstract

Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation 'circuity' that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.

Data availability

RNASEQ raw data have been deposited in GEO under accession code GSE205234Proteome raw data submitted to MassIVE MSV000089554

The following data sets were generated

Article and author information

Author details

  1. Kirill V Tarasov

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7799-4670
  2. Khalid Chakir

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel R Riordon

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexey Lyashkov

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ismayil Ahmet

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Grazia Perino

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Allwin Jennifa Silvester

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jing Zhang

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mingyi Wang

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yevgeniya O Lukyanenko

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jia-Hua Qu

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Miguel Calvo-Rubio Barrera

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Magdalena Juhaszova

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Yelena S Tarasova

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Bruce Ziman

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Richard Telljohann

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Vikas Kumar

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Mark Ranek

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. John Lammons

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Rostislav Bychkov

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Rafael de Cabo

    Translational Gerontology Branch, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2830-5693
  22. Seungho Jun

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Gizem Keceli

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9562-7994
  24. Ashish Gupta

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Dongmei Yang

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Miguel A Aon

    Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Luigi Adamo

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Christopher H Morrell

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Walter Otu

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  30. Cameron Carroll

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  31. Shane Chambers

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  32. Nazareno Paolocci

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  33. Thanh Huynh

    Section on medical neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  34. Karel Pacak

    Section on medical neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  35. Robert Weiss

    Department of Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  36. Loren Field

    Kraennert Institute of Cardiology, Indiana University, Idianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  37. Steven J Sollott

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  38. Edward G Lakatta

    Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, United States
    For correspondence
    lakattae@grc.nia.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4772-0035

Funding

National Heart, Lung, and Blood Institute (1R01HL155218)

  • Loren Field

National Heart, Lung, and Blood Institute (R01 HL136918,R01 HL1155760)

  • Nazareno Paolocci

National Heart, Lung, and Blood Institute (HL63030,HL61912)

  • Robert Weiss

American Heart Association (#18CDA34110140,#20TPA35500008)

  • Mark Ranek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publication no. 85-23, revised 1996). The experimental protocols were approved by the Animal Care and Use Committee of the National Institutes of Health (protocol #441-LCS-2019)

Reviewing Editor

  1. Kalyanam Shivkumar, UCLA Health, United States

Version history

  1. Preprint posted: May 20, 2022 (view preprint)
  2. Received: June 10, 2022
  3. Accepted: December 8, 2022
  4. Accepted Manuscript published: December 14, 2022 (version 1)
  5. Version of Record published: January 6, 2023 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 725
    Page views
  • 116
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kirill V Tarasov
  2. Khalid Chakir
  3. Daniel R Riordon
  4. Alexey Lyashkov
  5. Ismayil Ahmet
  6. Maria Grazia Perino
  7. Allwin Jennifa Silvester
  8. Jing Zhang
  9. Mingyi Wang
  10. Yevgeniya O Lukyanenko
  11. Jia-Hua Qu
  12. Miguel Calvo-Rubio Barrera
  13. Magdalena Juhaszova
  14. Yelena S Tarasova
  15. Bruce Ziman
  16. Richard Telljohann
  17. Vikas Kumar
  18. Mark Ranek
  19. John Lammons
  20. Rostislav Bychkov
  21. Rafael de Cabo
  22. Seungho Jun
  23. Gizem Keceli
  24. Ashish Gupta
  25. Dongmei Yang
  26. Miguel A Aon
  27. Luigi Adamo
  28. Christopher H Morrell
  29. Walter Otu
  30. Cameron Carroll
  31. Shane Chambers
  32. Nazareno Paolocci
  33. Thanh Huynh
  34. Karel Pacak
  35. Robert Weiss
  36. Loren Field
  37. Steven J Sollott
  38. Edward G Lakatta
(2022)
A remarkable adaptive paradigm of heart performance and protection emerges in response to the constitutive challenge of marked cardiac-specific overexpression of adenylyl cyclase type 8
eLife 11:e80949.
https://doi.org/10.7554/eLife.80949

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Heledd Davies, Hugo Belda ... Moritz Treeck
    Tools and Resources

    Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the P. falciparum exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria causing parasite, PfEMP1. We generated independent TurboID fusions of 2 proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.

    1. Cell Biology
    Bo Wang, Zheyong Liang ... Peijun Liu
    Research Article

    The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.