Defocus corrected large area cryo-EM (DeCo-LACE) for label-free detection of molecules across entire cell sections

  1. Johannes Elferich  Is a corresponding author
  2. Giulia Schiroli
  3. David Scadden
  4. Nikolaus Grigorieff  Is a corresponding author
  1. University of Massachusetts, Howard Hughes Medical Institute,, United States
  2. Harvard University, United States

Abstract

A major goal of biological imaging is localization of biomolecules inside a cell. Fluorescence microscopy can localize biomolecules inside whole cells and tissues, but its ability to count biomolecules and accuracy of the spatial coordinates is limited by the wavelength of visible light. Cryo-electron microscopy (cryo-EM) provides highly accurate position and orientation information of biomolecules but is often confined to small fields of view inside a cell, limiting biological context. In this study we use a new data-acquisition scheme called 'Defocus-Corrected Large-Area cryo-EM' (DeCo-LACE) to collect high-resolution images of entire sections (100 - 250 nm thick lamellae) of neutrophil-like mouse cells, representing 1-2% of the total cellular volume. We use 2D template matching (2DTM) to determine localization and orientation of the large ribosomal subunit in these sections. These data provide 'maps' of ribosomes across entire sections of mammalian cells. This high-throughput cryo-EM data collection approach together with 2DTM will advance visual proteomics and provide biological insight that cannot be obtained by other methods.

Data availability

Cryo-EM movies, motion-corrected images and 2DTM results have been deposited in EMPIAR under accession code EMPIAR-11063. The custom cisTEM version is available under https://github.com/jojoelfe/cisTEM/tree/2574dbdf6161658fd177660b3a841100a792f61b until features have been integrated into a cisTEM release. The ChimeraX extension for rendering is available under https://github.com/jojoelfe/tempest. This manuscript was prepared using the manubot package [37] . The corresponding repository containing all scripts used for figure generation can be found under https://github.com/jojoelfe/deco_lace_template_matching_manuscript.

Article and author information

Author details

  1. Johannes Elferich

    RNA Therapeutics Institute, University of Massachusetts, Howard Hughes Medical Institute,, Worcester, United States
    For correspondence
    Johannes.Elferich@umassmed.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9911-706X
  2. Giulia Schiroli

    Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. David Scadden

    Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Nikolaus Grigorieff

    RNA Therapeutics Institute, University of Massachusetts, Howard Hughes Medical Institute,, Worcester, United States
    For correspondence
    niko@grigorieff.org
    Competing interests
    Nikolaus Grigorieff, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1506-909X

Funding

Howard Hughes Medical Institute (HHMI Investigator)

  • Nikolaus Grigorieff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Elferich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,223
    views
  • 279
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johannes Elferich
  2. Giulia Schiroli
  3. David Scadden
  4. Nikolaus Grigorieff
(2022)
Defocus corrected large area cryo-EM (DeCo-LACE) for label-free detection of molecules across entire cell sections
eLife 11:e80980.
https://doi.org/10.7554/eLife.80980

Share this article

https://doi.org/10.7554/eLife.80980

Further reading

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.