GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base

  1. Dong Gil Jang
  2. Keun Yeong Kwon
  3. Yeong Cheon Kweon
  4. Byung-gyu Kim
  5. Kyungjae Myung
  6. Hyun-Shik Lee
  7. Chan Young Park
  8. Taejoon Kwon  Is a corresponding author
  9. Tae Joo Park  Is a corresponding author
  1. Ulsan National Institute of Science and Technology, Republic of Korea
  2. Institute for Basic Science, Republic of Korea
  3. Kyungpook National University, Republic of Korea

Abstract

The gap junction complex functions as a transport channel across the membrane. Among gap junction subunits, gap junction protein α1 (GJA1) is the most commonly expressed subunit. A recent study showed that GJA1 is necessary for the maintenance of motile cilia; however, the molecular mechanism and function of GJA1 in ciliogenesis remain unknown. Here, we examined the functions of GJA1 during ciliogenesis in human retinal pigment epithelium-1 and Xenopus laevis embryonic multiciliated-cells. GJA1 localizes to the motile ciliary axonemes or pericentriolar regions beneath the primary cilium. GJA1 depletion caused malformation of both the primary cilium and motile cilia. Further study revealed that GJA1 depletion affected several ciliary proteins such as BBS4, CP110, and Rab11 in the pericentriolar region and basal body. Interestingly, CP110 removal from the mother centriole was significantly reduced by GJA1 depletion. Importantly, Rab11, a key regulator during ciliogenesis, was immunoprecipitated with GJA1, and GJA1 knockdown caused the mislocalization of Rab11. These findings suggest that GJA1 regulates ciliogenesis by interacting with the Rab11-Rab8 ciliary trafficking pathway.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting file and source data files

The following data sets were generated
    1. Jang D
    2. Park T
    (2022) GJA1 IP/MS dataset
    Dryad Digital Repository, doi:10.5061/dryad.tht76hdxt.

Article and author information

Author details

  1. Dong Gil Jang

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Keun Yeong Kwon

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Yeong Cheon Kweon

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Byung-gyu Kim

    Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyungjae Myung

    Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Hyun-Shik Lee

    School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Chan Young Park

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Taejoon Kwon

    Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    For correspondence
    tkwon@unist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  9. Tae Joo Park

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    For correspondence
    parktj@unist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3176-177X

Funding

Korea National Research Foundation (2021R1A2B5B02002285)

  • Tae Joo Park

Institute for Basic Science (IBS-R001-D1)

  • Taejoon Kwon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gregory J Pazour, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: All animal experiments were performed with appropriate ethical approval from the UNIST Institutional Animal Care and Use Committee (UNISTIACUC-19-22, UNISTIACUC-20-26).

Version history

  1. Preprint posted: November 16, 2020 (view preprint)
  2. Received: June 13, 2022
  3. Accepted: August 11, 2022
  4. Accepted Manuscript published: August 25, 2022 (version 1)
  5. Version of Record published: September 6, 2022 (version 2)

Copyright

© 2022, Jang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,106
    views
  • 321
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dong Gil Jang
  2. Keun Yeong Kwon
  3. Yeong Cheon Kweon
  4. Byung-gyu Kim
  5. Kyungjae Myung
  6. Hyun-Shik Lee
  7. Chan Young Park
  8. Taejoon Kwon
  9. Tae Joo Park
(2022)
GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base
eLife 11:e81016.
https://doi.org/10.7554/eLife.81016

Share this article

https://doi.org/10.7554/eLife.81016

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.