GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base

  1. Dong Gil Jang
  2. Keun Yeong Kwon
  3. Yeong Cheon Kweon
  4. Byung-gyu Kim
  5. Kyungjae Myung
  6. Hyun-Shik Lee
  7. Chan Young Park
  8. Taejoon Kwon  Is a corresponding author
  9. Tae Joo Park  Is a corresponding author
  1. Ulsan National Institute of Science and Technology, Republic of Korea
  2. Institute for Basic Science, Republic of Korea
  3. Kyungpook National University, Republic of Korea

Abstract

The gap junction complex functions as a transport channel across the membrane. Among gap junction subunits, gap junction protein α1 (GJA1) is the most commonly expressed subunit. A recent study showed that GJA1 is necessary for the maintenance of motile cilia; however, the molecular mechanism and function of GJA1 in ciliogenesis remain unknown. Here, we examined the functions of GJA1 during ciliogenesis in human retinal pigment epithelium-1 and Xenopus laevis embryonic multiciliated-cells. GJA1 localizes to the motile ciliary axonemes or pericentriolar regions beneath the primary cilium. GJA1 depletion caused malformation of both the primary cilium and motile cilia. Further study revealed that GJA1 depletion affected several ciliary proteins such as BBS4, CP110, and Rab11 in the pericentriolar region and basal body. Interestingly, CP110 removal from the mother centriole was significantly reduced by GJA1 depletion. Importantly, Rab11, a key regulator during ciliogenesis, was immunoprecipitated with GJA1, and GJA1 knockdown caused the mislocalization of Rab11. These findings suggest that GJA1 regulates ciliogenesis by interacting with the Rab11-Rab8 ciliary trafficking pathway.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting file and source data files

The following data sets were generated
    1. Jang D
    2. Park T
    (2022) GJA1 IP/MS dataset
    Dryad Digital Repository, doi:10.5061/dryad.tht76hdxt.

Article and author information

Author details

  1. Dong Gil Jang

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Keun Yeong Kwon

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Yeong Cheon Kweon

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Byung-gyu Kim

    Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyungjae Myung

    Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Hyun-Shik Lee

    School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Chan Young Park

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Taejoon Kwon

    Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    For correspondence
    tkwon@unist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  9. Tae Joo Park

    Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    For correspondence
    parktj@unist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3176-177X

Funding

Korea National Research Foundation (2021R1A2B5B02002285)

  • Tae Joo Park

Institute for Basic Science (IBS-R001-D1)

  • Taejoon Kwon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed with appropriate ethical approval from the UNIST Institutional Animal Care and Use Committee (UNISTIACUC-19-22, UNISTIACUC-20-26).

Reviewing Editor

  1. Gregory J Pazour, University of Massachusetts Medical School, United States

Publication history

  1. Preprint posted: November 16, 2020 (view preprint)
  2. Received: June 13, 2022
  3. Accepted: August 11, 2022
  4. Accepted Manuscript published: August 25, 2022 (version 1)
  5. Version of Record published: September 6, 2022 (version 2)

Copyright

© 2022, Jang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 745
    Page views
  • 277
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dong Gil Jang
  2. Keun Yeong Kwon
  3. Yeong Cheon Kweon
  4. Byung-gyu Kim
  5. Kyungjae Myung
  6. Hyun-Shik Lee
  7. Chan Young Park
  8. Taejoon Kwon
  9. Tae Joo Park
(2022)
GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base
eLife 11:e81016.
https://doi.org/10.7554/eLife.81016

Further reading

    1. Cell Biology
    Enric Gutiérrez-Martínez, Susana Benet Garrab ... Maria F Garcia-Parajo
    Research Article

    The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DC) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.

    1. Cell Biology
    2. Neuroscience
    Yu Wang, Meghan Lee Arnold ... Barth D Grant
    Research Article Updated

    Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.