Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally discontiguous inputs

  1. Tanja Fuchsberger
  2. Claudia Clopath
  3. Przemyslaw Jarzebowski
  4. Zuzanna Brzosko
  5. Hongbing Wang
  6. Ole Paulsen  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Imperial College London, United Kingdom
  3. Michigan State University, United States

Abstract

A fundamental unresolved problem in neuroscience is how the brain associates in memory events that are separated in time. Here we propose that reactivation-induced synaptic plasticity can solve this problem. Previously, we reported that the reinforcement signal dopamine converts hippocampal spike timing-dependent depression into potentiation during continued synaptic activity (Brzosko et al., 2015). Here, we report that postsynaptic bursts in the presence of dopamine produce input-specific LTP in mouse hippocampal synapses 10 minutes after they were primed with coincident pre- and postsynaptic activity (post-before-pre pairing; Δt = -20 ms). This priming activity induces synaptic depression and sets an NMDA receptor-dependent silent eligibility trace which, through the cAMP-PKA cascade, is rapidly converted into protein synthesis-dependent synaptic potentiation, mediated by a signaling pathway distinct from that of conventional LTP. This synaptic learning rule was incorporated into a computational model, and we found that it adds specificity to reinforcement learning by controlling memory allocation and enabling both ‘instructive’ and 'supervised' reinforcement learning. We predicted that this mechanism would make reactivated neurons activate more strongly and carry more spatial information than non-reactivated cells, which was confirmed in freely moving mice performing a reward-based navigation task.

Data availability

Data availabilityExperimental data and code are available at:Code for computational model and code for in vivo analysis (including a link to in vivo data) are available at: https://github.com/przemyslawj/dCA1-reactivations. Data of plasticity experiments and of simulation data from computational model are available at: https://data.mendeley.com/datasets/dx7cdgpcz3/1.

The following data sets were generated

Article and author information

Author details

  1. Tanja Fuchsberger

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Claudia Clopath

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4507-8648
  3. Przemyslaw Jarzebowski

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Zuzanna Brzosko

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Hongbing Wang

    Department of Physiology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ole Paulsen

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    op210@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2258-5455

Funding

Biotechnology and Biological Sciences Research Council (BB/N019008/1)

  • Tanja Fuchsberger
  • Zuzanna Brzosko
  • Ole Paulsen

Biotechnology and Biological Sciences Research Council (BB/P019560/1)

  • Tanja Fuchsberger
  • Claudia Clopath
  • Ole Paulsen

Biotechnology and Biological Sciences Research Council (Studentship)

  • Przemyslaw Jarzebowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marco Capogna, University of Aarhus, Denmark

Ethics

Animal experimentation: Experimental procedures and animal use were performed in accordance with UK Home Office regulations of the UK Animals (Scientific Procedures) Act 1986 and Amendment Regulations 2012, following ethical review by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB). All animal procedures were authorized under Personal and Project licences held by the authors.

Version history

  1. Received: June 23, 2022
  2. Preprint posted: June 26, 2022 (view preprint)
  3. Accepted: October 9, 2022
  4. Accepted Manuscript published: October 13, 2022 (version 1)
  5. Version of Record published: October 27, 2022 (version 2)

Copyright

© 2022, Fuchsberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,240
    views
  • 359
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tanja Fuchsberger
  2. Claudia Clopath
  3. Przemyslaw Jarzebowski
  4. Zuzanna Brzosko
  5. Hongbing Wang
  6. Ole Paulsen
(2022)
Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally discontiguous inputs
eLife 11:e81071.
https://doi.org/10.7554/eLife.81071

Share this article

https://doi.org/10.7554/eLife.81071

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.