Substrate stiffness impacts early biofilm formation by modulating Pseudomonas aeruginosa twitching motility

  1. Sofia Gomez
  2. Lionel Bureau
  3. Karin John
  4. Elise-Noëlle Chêne
  5. Delphine Débarre  Is a corresponding author
  6. Sigolene Lecuyer  Is a corresponding author
  1. Université Grenoble Alpes, CNRS, France
  2. ENS de Lyon, CNRS, France
  3. ENS de Lyon,CNRS, France

Abstract

Surface-associated lifestyles dominate in the bacterial world. Large multicellular assemblies, called biofilms, are essential to the survival of bacteria in harsh environments, and are closely linked to antibiotic resistance in pathogenic strains. Biofilms stem from the surface colonization of a wide variety of substrates encountered by bacteria, from living tissues to inert materials. Here, we demonstrate experimentally that the promiscuous opportunistic pathogen Pseudomonas aeruginosa explores substrates differently based on their rigidity, leading to striking variations in biofilm structure, exopolysaccharides (EPS) distribution, strain mixing during co-colonization and phenotypic expression. Using simple kinetic models, we show that these phenotypes arise through a mechanical interaction between the elasticity of the substrate and the type IV pilus (T4P) machinery, that mediates the surface-based motility called twitching. Together, our findings reveal a new role for substrate softness in the spatial organization of bacteria in complex microenvironments, with far-reaching consequences on efficient biofilm formation.

Data availability

Figure 2 - Source Data and Figure 3 - Source Data contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Sofia Gomez

    Université Grenoble Alpes, CNRS, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Lionel Bureau

    Université Grenoble Alpes, CNRS, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Karin John

    Université Grenoble Alpes, CNRS, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1678-6880
  4. Elise-Noëlle Chêne

    Laboratoire de Physique, ENS de Lyon, CNRS, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Delphine Débarre

    Université Grenoble Alpes, CNRS, Grenoble, France
    For correspondence
    delphine.debarre@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0513-6172
  6. Sigolene Lecuyer

    Laboratoire de Physique, ENS de Lyon,CNRS, Lyon, France
    For correspondence
    sigolene.lecuyer@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7393-2667

Funding

Agence Nationale de la Recherche (ANR-19-CE42-0010)

  • Delphine Débarre

Labex Tec21 (ANR-11-LABX-0030)

  • Lionel Bureau
  • Karin John
  • Delphine Débarre
  • Sigolene Lecuyer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Gomez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,967
    views
  • 288
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sofia Gomez
  2. Lionel Bureau
  3. Karin John
  4. Elise-Noëlle Chêne
  5. Delphine Débarre
  6. Sigolene Lecuyer
(2023)
Substrate stiffness impacts early biofilm formation by modulating Pseudomonas aeruginosa twitching motility
eLife 12:e81112.
https://doi.org/10.7554/eLife.81112

Share this article

https://doi.org/10.7554/eLife.81112

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Microbiology and Infectious Disease
    Caihong Hu
    Insight

    Certain strains of a bacterium found in the gut of some animals, Lactobacillus plantarum, are able to counter hyperuricemia, a condition caused by high levels of uric acid in the blood.