Structure of Dunaliella Photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes

  1. Ido Caspy
  2. Maria Fadeeva
  3. Yuval Mazor  Is a corresponding author
  4. Nathan Nelson  Is a corresponding author
  1. Tel Aviv University, Israel
  2. Arizona State University, United States

Abstract

Photosystem II (PSII) generates an oxidant whose redox potential is high enough to enable water oxidation (Shen 2015; McEvoy and Brudvig 2006), a substrate so abundant that it assures a practically unlimited electron source for life on earth (Barber 2004). Our knowledge on the mechanism of water photooxidation was greatly advanced by high-resolution structures of prokaryotic PSII (Umena et al. 2011; Suga et al. 2019; Kato et al. 2021). Here we show high-resolution cryo-EM structures of eukaryotic PSII from the green alga Dunaliella salina at two distinct conformations. The conformers are also present in stacked PSII, exhibiting flexibility that may relevant to the grana formation in chloroplasts of the green lineage. CP29, one of PSII associated light-harvesting antennae, plays a major role in distinguishing the two conformations of the supercomplex. We also show that the stacked PSII dimer, a form suggested to support the organization of thylakoid membranes (Garab and Mustárdy 2000; Kirchhoff et al. 2007), can appear in many different orientations providing a flexible stacking mechanism for the arrangement of grana stacks in thylakoids. Our findings provide a structural basis for the heterogenous nature of the eukaryotic PSII on multiple levels.

Data availability

Data availability: The atomic coordinates have been deposited in the Protein Data Bank, with accession code 7PI0 (C2S2 COMP ), 7PI5 (C2S2 STR), 7PNK (C2S), 7PIN (stacked C2S2 COMP ) and 7PIW (stacked C2S2 STR ). The cryo-EM maps have been deposited in the Electron Microscopy Data Bank, with accession codes EMD-13429 (C2S2 COMP ), EMD-13430 (C2S2 STR ), EMD-13548 (C2S), EMD-13444 (stacked C2S2 COMP ) and EMD-13455 (stacked C2S2 STR ).

The following data sets were generated

Article and author information

Author details

  1. Ido Caspy

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Fadeeva

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuval Mazor

    School of Molecular Sciences, Arizona State University, Tempe, United States
    For correspondence
    ymazor@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
  4. Nathan Nelson

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    nelson@tauex.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3588-7265

Funding

Israel Science Foundation (569/17)

  • Nathan Nelson

Israel Science Foundation (199/21)

  • Nathan Nelson

German-Israeli Foundation for Scientific Research and Development (G-1483-207/2018)

  • Nathan Nelson

National Science Foundation (2034021)

  • Yuval Mazor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Caspy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,279
    views
  • 185
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ido Caspy
  2. Maria Fadeeva
  3. Yuval Mazor
  4. Nathan Nelson
(2023)
Structure of Dunaliella Photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes
eLife 12:e81150.
https://doi.org/10.7554/eLife.81150

Share this article

https://doi.org/10.7554/eLife.81150

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Plant Biology
    Maryam Rahmati Ishka, Hayley Sussman ... Magdalena M Julkowska
    Research Article

    Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study’s innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.