EHD2 overexpression promotes tumorigenesis and metastasis in triple-negative breast cancer by regulating store-operated calcium entry

Abstract

With nearly all cancer deaths a result of metastasis, elucidating novel pro-metastatic cellular adaptations could provide new therapeutic targets. Here, we show that overexpression of the EPS15-Homology Domain-containing 2 (EHD2) protein in a large subset of breast cancers (BCs), especially the triple-negative (TNBC) and HER2+ subtypes, correlates with shorter patient survival. The mRNAs for EHD2 and Caveolin-1/2, structural components of caveolae, show co-overexpression across breast tumors, predicting shorter survival in basal-like BC. EHD2 shRNA knockdown and CRISPR-Cas9 knockout with mouse Ehd2 rescue, in TNBC cell line models demonstrate a major positive role of EHD2 in promoting tumorigenesis and metastasis. Mechanistically, we link these roles of EHD2 to store-operated calcium entry (SOCE), with EHD2-dependent stabilization of plasma membrane caveolae ensuring high cell surface expression of the SOCE-linked calcium channel Orai1. The novel EHD2-SOCE oncogenic axis represents a potential therapeutic target in EHD2 and CAV1/2-overexpressing BC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Haitao Luan

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  2. Timothy A Bielecki

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  3. Bhopal C Mohapatra

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  4. Namista Islam

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  5. Insha Mushtaq

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  6. Aaqib M Bhat

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  7. Sameer Mirza

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  8. Sukanya Chakraborty

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  9. Mohsin Raza

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  10. Matthew D Storck

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  11. Michael S Toss

    Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
    Competing interests
    No competing interests declared.
  12. Jane L Meza

    Departments of Biostatistics, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  13. Wallace B Thoreson

    Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7104-042X
  14. Donald W Coulter

    Department of Pediatrics, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    No competing interests declared.
  15. Emad A Rakha

    Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
    Competing interests
    No competing interests declared.
  16. Vimla Band

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    For correspondence
    vband@unmc.edu
    Competing interests
    Vimla Band, received funding from Nimbus Therapeutics for an unrelated project..
  17. Hamid Band

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States
    For correspondence
    hband@unmc.edu
    Competing interests
    Hamid Band, received funding from Nimbus Therapeutics for an unrelated project..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4996-9002

Funding

Department of Defence (W81XWH-17-1-0616 and W81XWH-20-1-0058)

  • Hamid Band

Department of Defence (W81XWH-20-1-0546)

  • Vimla Band

National Institutes of Health (R21CA241055 and R03CA253193)

  • Vimla Band

Fred and Pamela Buffett Cancer Center (Pilot grant)

  • Vimla Band

Fred and Pamela Buffett Cancer Center (Pilot grant)

  • Hamid Band

University of Nebraska Medical Center (Graduate Student Fellowships)

  • Timothy A Bielecki

University of Nebraska Medical Center (Graduate Student Fellowships)

  • Aaqib M Bhat

University of Nebraska Medical Center (Graduate Student Fellowships)

  • Sukanya Chakraborty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse xenograft and treatment studies were pre-approved by the UNMC Institutional Animal Care and Use Committee (IACUC) under the IACUC protocol number 19-115-10-FC and conducted strictly according to the pre-approved procedures, in compliance with Federal and State guidelines.

Human subjects: Human tissues were collected and processed at the Nottingham University Hospital, United Kingdom. This study was approved by the Yorkshire & The Humber-Leeds East Research Ethics Committee (REC reference: 19/YH/0293) under the IRAS Project ID: 266925. Informed consent was obtained from all individuals prior to surgery for the use of their tissue materials in research. All samples were properly coded and anonymized in accordance with the approved protocols.

Copyright

© 2023, Luan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,475
    views
  • 230
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.81288

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.