Structure and flexibility of the yeast NuA4 histone acetyltransferase complex

  1. Stefan A Zukin
  2. Matthew R Marunde
  3. Irina K Popova
  4. Katarzyna M Soczek
  5. Eva Nogales  Is a corresponding author
  6. Avinash B Patel  Is a corresponding author
  1. Harvard University, United States
  2. EpiCypher, United States
  3. University of California, Berkeley, United States
  4. Lawrence Berkeley National Laboratory, United States
  5. Northwestern University, United States

Abstract

The NuA4 protein complex acetylates histones H4 and H2A to activate both transcription and DNA repair. We report the 3.1 Å-resolution cryo-electron microscopy structure of the central hub of NuA4, which flexibly tethers the HAT and TINTIN modules. The hub contains the large Tra1 subunit and a core that includes Swc4, Arp4, Act1, Eaf1 and the C-terminal region of Epl1. Eaf1 stands out as the primary scaffolding factor that interacts with the Tra1, Swc4 and Epl1 subunits and contributes the conserved HSA helix to the Arp module. Using nucleosome binding assays, we find that the HAT module, which is anchored to the core through Epl1, recognizes H3K4me3 nucleosomes with hyperacetylated H3 tails, while the TINTIN module, anchored to the core via Eaf1, recognizes nucleosomes that have hyperacetylated H2A and H4 tails. Together with the known interaction of Tra1 with site-specific transcription factors, our data suggests a model in which Tra1 recruits NuA4 to specific genomic sites then allowing the flexible HAT and TINTIN modules to select nearby nucleosomes for acetylation.

Data availability

The cryo-EM maps and coordinate models have been deposited in the Electron Microscopy Data Bank with the accession codes EMD-28575 (NuA4 full), EMD-28563 (NuA4 core), EMD-28565 (NuA4 Tra1-FATKIN), EMD-28566 (Tra1-HEAT), EMD-28568 (Tra1-HEAT-top), EMD-28569 (Tra1-HEAT-middle), EMD-28567 (Tra1-HEAT-bottom) and in the Protein Data Bank with the accession codes PDB-8ESC (NuA4). Plasmids for HAT and TINTIN expression have been made available through Addgene (Catalog #193325 (S.c. NuA4 HAT) and #193326 (S.c NuA4 TINTIN)).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Stefan A Zukin

    Department of Genetics, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
  2. Matthew R Marunde

    EpiCypher, Durham, United States
    Competing interests
    Matthew R Marunde, EpiCypher is a commercial developer and supplier of reagents (e.g. PTM-defined semi-synthetic nucleosomes; dNucs) and platforms (dCypher®) used in this study..
  3. Irina K Popova

    EpiCypher, Durham, United States
    Competing interests
    Irina K Popova, EpiCypher is a commercial developer and supplier of reagents (e.g. PTM-defined semi-synthetic nucleosomes; dNucs) and platforms (dCypher®) used in this study..
  4. Katarzyna M Soczek

    California Institute for Quantitative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Eva Nogales

    Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    For correspondence
    enogales@lbl.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9816-3681
  6. Avinash B Patel

    Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    avinash.patel@northwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9140-8375

Funding

National Institute of General Medical Sciences (R35-GM127018)

  • Stefan A Zukin
  • Eva Nogales
  • Avinash B Patel

National Institute of General Medical Sciences (R44GM117683)

  • Matthew R Marunde
  • Irina K Popova

National Institute of General Medical Sciences (R44GM116584)

  • Matthew R Marunde
  • Irina K Popova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Preprint posted: June 25, 2022 (view preprint)
  2. Received: June 25, 2022
  3. Accepted: October 17, 2022
  4. Accepted Manuscript published: October 20, 2022 (version 1)
  5. Version of Record published: November 8, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,186
    views
  • 287
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan A Zukin
  2. Matthew R Marunde
  3. Irina K Popova
  4. Katarzyna M Soczek
  5. Eva Nogales
  6. Avinash B Patel
(2022)
Structure and flexibility of the yeast NuA4 histone acetyltransferase complex
eLife 11:e81400.
https://doi.org/10.7554/eLife.81400

Share this article

https://doi.org/10.7554/eLife.81400

Further reading

    1. Structural Biology and Molecular Biophysics
    Stephanie A Wankowicz, Ashraya Ravikumar ... James S Fraser
    Research Article

    In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift toward modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior Rfree and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g., Coot) and fit can be further improved by refinement using standard pipelines (e.g., Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.

    1. Structural Biology and Molecular Biophysics
    Katarzyna Drożdżyk, Martina Peter, Raimund Dutzler
    Research Advance

    The CALHM proteins constitute a family of large pore channels that contains six closely related paralogs in humans. Two family members, CALHM1 and 3, have been associated with the release of ATP during taste sensation. Both proteins form heteromeric channels that activate at positive potential and decreased extracellular Ca2+ concentration. Although the structures of several family members displayed large oligomeric organizations of different size, their function has in most cases remained elusive. Our previous study has identified the paralogs CALHM2, 4 and, 6 to be highly expressed in the placenta and defined their structural properties as membrane proteins exhibiting features of large pore channels with unknown activation properties (Drożdżyk et al., 2020). Here, we investigated whether these placental paralogs would form heteromers and characterized heteromeric complexes consisting of CALHM2 and CALHM4 subunits using specific binders as fiducial markers. Both proteins assemble with different stoichiometries with the largest population containing CALHM2 as the predominant component. In these oligomers, the subunits segregate and reside in their preferred conformation found in homomeric channels. Our study has thus revealed the properties that govern the formation of CALHM heteromers in a process of potential relevance in a cellular context.