CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles

  1. Brian D Mueller
  2. Sean A Merrill
  3. Shigeki Watanabe
  4. Ping Liu
  5. Long-Gang Niu
  6. Anish Singh
  7. Pablo Maldonado-Catala
  8. Alex Cherry
  9. Matthew S Rich
  10. Malan Silva
  11. Andres Villu Maricq
  12. Zhao-Wen Wang
  13. Erik M Jorgensen  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Utah, United States
  2. University of Connecticut Health Center, United States
  3. University of Utah, United States

Abstract

Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at C. elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α‑Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.

Data availability

All data generated and analyzed during this study have been included as supporting files; Source Data files have been provided. Github links to scripts used for analysis are noted in the methods.

Article and author information

Author details

  1. Brian D Mueller

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6525-7101
  2. Sean A Merrill

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shigeki Watanabe

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7580-8141
  4. Ping Liu

    Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Long-Gang Niu

    Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7209-7436
  6. Anish Singh

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pablo Maldonado-Catala

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alex Cherry

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew S Rich

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Malan Silva

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Andres Villu Maricq

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhao-Wen Wang

    Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3574-8556
  13. Erik M Jorgensen

    School of Biological Sciences, Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    For correspondence
    jorgensen@bioscience.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2978-8028

Funding

National Science Foundation (NeuroNex 2014862)

  • Erik M Jorgensen

National Institutes of Health (R01 NS034307)

  • Erik M Jorgensen

National Institutes of Health (R01 MH085927)

  • Zhao-Wen Wang

National Institutes of Health (R01 NS109388)

  • Zhao-Wen Wang

National Institutes of Health (R01 NS094421)

  • Andres Villu Maricq

National Institutes of Health (F31 NS084826)

  • Sean A Merrill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Version history

  1. Preprint posted: May 3, 2022 (view preprint)
  2. Received: June 25, 2022
  3. Accepted: February 22, 2023
  4. Accepted Manuscript published: February 23, 2023 (version 1)
  5. Version of Record published: March 17, 2023 (version 2)
  6. Version of Record updated: March 28, 2023 (version 3)

Copyright

© 2023, Mueller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,687
    views
  • 454
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian D Mueller
  2. Sean A Merrill
  3. Shigeki Watanabe
  4. Ping Liu
  5. Long-Gang Niu
  6. Anish Singh
  7. Pablo Maldonado-Catala
  8. Alex Cherry
  9. Matthew S Rich
  10. Malan Silva
  11. Andres Villu Maricq
  12. Zhao-Wen Wang
  13. Erik M Jorgensen
(2023)
CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles
eLife 12:e81407.
https://doi.org/10.7554/eLife.81407

Share this article

https://doi.org/10.7554/eLife.81407

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.