Computational model of the full-length TSH receptor

  1. Mihaly Mezei  Is a corresponding author
  2. Rauf Latif
  3. Terry F Davies
  1. Icahn School of Medicine at Mount Sinai, United States

Abstract

The receptor for thyroid stimulating hormone (TSHR), a GPCR, is of particular interest as the primary antigen in autoimmune hyperthyroidism (Graves' disease) caused by stimulating TSHR antibodies. To date, only one domain of the extracellular region of the TSHR has been crystallized. We have run a 1000ns Molecular Dynamic simulation on a model of the entire TSHR generated by merging the extracellular region of the receptor, obtained using artificial intelligence, with our recent homology model of the transmembrane domain, embedded it in a lipid membrane solvated it with water and counterions. The simulations showed that the structure of the transmembrane and leucine-rich domains were remarkably constant while the linking region (LR), known more commonly as the 'hinge region', showed significant flexibility, forming several transient secondary structural elements. Furthermore, the relative orientation of the leucine-rich domain with the rest of the receptor was also seen to be variable. These data suggest that this linker region is an intrinsically disordered protein (IDP). Furthermore, preliminary data simulating the full TSHR model complexed with its ligand (TSH) showed that (a) there is a strong affinity between the linker region and TSH ligand and (b) the association of the linker region and the TSH ligand reduces the structural fluctuations in the linker region. This full-length model illustrates the importance of the linker region in responding to ligand binding and lays the foundation for studies of pathologic TSHR autoantibodies complexed with the TSHR to give further insight into their interaction with the flexible linker region.

Data availability

The initial model generated is available from the Dryad server; URL: https://doi.org/10.5061/dryad.rjdfn2zdp.The software used for the analysis are available at the URL https://mezeim01.u.hpc.mssm.edu

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mihaly Mezei

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    Mihaly.Mezei@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0294-4307
  2. Rauf Latif

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4226-3728
  3. Terry F Davies

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Terry F Davies, is member of the Board of Kronus Inc (Starr, ID, USA); MM, and RF have nothing to disclose..

Funding

NIH Office of the Director (DK069713)

  • Mihaly Mezei

Veterans Administration merit award (BX000800)

  • Terry F Davies

Segal Family Foundation (00000000)

  • Terry F Davies

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yogesh K Gupta, The University of Texas Health Science Center at San Antonio, United States

Version history

  1. Received: June 26, 2022
  2. Preprint posted: July 15, 2022 (view preprint)
  3. Accepted: October 12, 2022
  4. Accepted Manuscript published: October 28, 2022 (version 1)
  5. Version of Record published: November 7, 2022 (version 2)

Copyright

© 2022, Mezei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 603
    views
  • 142
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mihaly Mezei
  2. Rauf Latif
  3. Terry F Davies
(2022)
Computational model of the full-length TSH receptor
eLife 11:e81415.
https://doi.org/10.7554/eLife.81415

Share this article

https://doi.org/10.7554/eLife.81415

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.