State-specific morphological deformations of the lipid bilayer explain mechanosensitive gating of MscS ion channels

  1. Yein Christina Park
  2. Bharat Reddy
  3. Navid Bavi
  4. Eduardo Perozo  Is a corresponding author
  5. José D Faraldo-Gómez  Is a corresponding author
  1. National Heart, Lung and Blood Institute, United States
  2. University of Chicago, United States

Abstract

The force-from-lipids hypothesis of cellular mechanosensation posits that membrane channels open and close in response to changes in the physical state of the lipid bilayer, induced for example by lateral tension. Here, we investigate the molecular basis for this transduction mechanism by studying the mechanosensitive ion channel MscS from Escherichia coli and its eukaryotic homolog, MSL1 from Arabidopsis thaliana. First, we use single-particle cryo-EM to determine the structure of a novel open conformation of wild-type MscS, stabilized in a thinned lipid nanodisc. Compared with the closed state, the structure shows a reconfiguration of helices TM1, TM2 and TM3a, and widening of the central pore. Based on these structures, we examined how the morphology of the lipid bilayer is altered upon gating, using molecular dynamics simulations. The simulations reveal that closed-state MscS causes drastic protrusions in the inner leaflet of the lipid bilayer, both in the absence and presence of lateral tension, and for different lipid compositions. These deformations arise to provide adequate solvation to hydrophobic features of the protein surface in this conformation, and clearly reflect a high energy conformation for the membrane, particularly under tension. Strikingly, these protrusions are largely eradicated upon channel opening. An analogous computational study of open and closed MSL1 recapitulates these findings. The gating equilibrium of MscS channels thus appears to be dictated by two opposing conformational preferences, namely those of the lipid membrane and of the protein structure. We propose a membrane deformation model of mechanosensation, which posits that tension shifts the gating equilibrium towards the conductive state not because it alters the mode in which channel and lipids interact but because it increases the energetic cost of the morphological perturbations in the membrane induced by to the closed state.

Data availability

EM maps and atomic models have been deposited in the Electron Microscopy Data Bank (accession number EMD-27337) and the Protein Data Bank (entry code 8DDJ).

The following data sets were generated

Article and author information

Author details

  1. Yein Christina Park

    Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5011-7421
  2. Bharat Reddy

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Navid Bavi

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Eduardo Perozo

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    For correspondence
    eduardo.perozo@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7132-2793
  5. José D Faraldo-Gómez

    Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, Bethesda, United States
    For correspondence
    jose.faraldo@nih.gov
    Competing interests
    José D Faraldo-Gómez, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7224-7676

Funding

National Institutes of Health (R01GM131191)

  • Bharat Reddy
  • Navid Bavi
  • Eduardo Perozo

National Institutes of Health (IRP)

  • Yein Christina Park
  • José D Faraldo-Gómez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,524
    views
  • 227
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yein Christina Park
  2. Bharat Reddy
  3. Navid Bavi
  4. Eduardo Perozo
  5. José D Faraldo-Gómez
(2023)
State-specific morphological deformations of the lipid bilayer explain mechanosensitive gating of MscS ion channels
eLife 12:e81445.
https://doi.org/10.7554/eLife.81445

Share this article

https://doi.org/10.7554/eLife.81445

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.