SUMOylation of NaV1.2 channels regulates the velocity of backpropagating action potentials in cortical pyramidal neurons

  1. Oron Kotler
  2. Yana Khrapunsky
  3. Arik Shvartsman
  4. Hui Dai
  5. Leigh D Plant
  6. Steven AN Goldstein  Is a corresponding author
  7. Ilya Fleidervish  Is a corresponding author
  1. Ben-Gurion University of the Negev, Israel
  2. University of California, Irvine, United States
  3. Northeastern University, United States

Abstract

Voltage-gated sodium channels located in axon initial segments (AIS) trigger action potentials (AP) and play pivotal roles in the excitability of cortical pyramidal neurons. The differential electrophysiological properties and distributions of NaV1.2 and NaV1.6 channels lead to distinct contributions to AP initiation and propagation. While NaV1.6 at the distal AIS promotes AP initiation and forward propagation, NaV1.2 at the proximal AIS promotes the backpropagation of APs to the soma. Here, we show the Small Ubiquitin-like Modifier (SUMO) pathway modulates Na+ channels at the AIS to increase neuronal gain and the speed of backpropagation. Since SUMO does not affect NaV1.6, these effects were attributed to SUMOylation of NaV1.2. Moreover, SUMO effects were absent in a mouse engineered to express NaV1.2-Lys38Gln channels that lack the site for SUMO linkage. Thus, SUMOylation of NaV1.2 exclusively controls INaP generation and AP backpropagation, thereby playing a prominent role in synaptic integration and plasticity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; the Source Data files will be uploaded to the Dryad server promptly

The following data sets were generated

Article and author information

Author details

  1. Oron Kotler

    Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yana Khrapunsky

    Depatrment of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Arik Shvartsman

    Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Hui Dai

    Department of Pediatrics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Leigh D Plant

    Department of Pharmaceutical Sciences, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1622-1655
  6. Steven AN Goldstein

    Department of Pediatrics, University of California, Irvine, Irvine, United States
    For correspondence
    sgoldst2@hs.uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5207-5061
  7. Ilya Fleidervish

    Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
    For correspondence
    ilya@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5501-726X

Funding

Israel Science Foundation (1384/19)

  • Ilya Fleidervish

National Institutes of Health (R01HL10549)

  • Steven AN Goldstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out at the Ben-Gurion University of the Negev in accordance with the recommendations of guidelines for the welfare of experimental animals. Animal experiments were approved by the Institutional Animal Care and Use Committee of Ben-Gurion University (protocols IL-68-09-2019(A), IL-79-10-2020(D)).

Copyright

© 2023, Kotler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 968
    views
  • 194
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oron Kotler
  2. Yana Khrapunsky
  3. Arik Shvartsman
  4. Hui Dai
  5. Leigh D Plant
  6. Steven AN Goldstein
  7. Ilya Fleidervish
(2023)
SUMOylation of NaV1.2 channels regulates the velocity of backpropagating action potentials in cortical pyramidal neurons
eLife 12:e81463.
https://doi.org/10.7554/eLife.81463

Share this article

https://doi.org/10.7554/eLife.81463

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.