Applying causal discovery to single-cell analyses using CausalCell

  1. Yujian Wen
  2. Jielong Huang
  3. Shuhui Guo
  4. Yehezqel Elyahu
  5. Alon Monsonego
  6. Hai Zhang  Is a corresponding author
  7. Yanqing Ding  Is a corresponding author
  8. Hao Zhu  Is a corresponding author
  1. Southern Medical University, China
  2. Ben-Gurion University of the Negev, Israel

Abstract

Correlation between objects is prone to occur coincidentally, and exploring correlation or association in most situations does not answer scientific questions rich in causality. Causal discovery (also called causal inference) infers causal interactions between objects from observational data. Inferred causal interactions in single cells provide valuable clues for investigating molecular interaction and gene regulation, identifying critical diagnostic and therapeutic targets, and designing experimental and clinical interventions. The report of causal discovery methods and generation of single-cell data make applying causal discovery to single-cells a promising direction. However, how to evaluate and choose causal discovery methods and how to develop workflow and platform remain challenges. We report the workflow and platform CausalCell (http://www.gaemons.net/causalcell/causalDiscovery/) for performing single-cell causal discovery. The workflow/platform is developed upon benchmarking four kinds of causal discovery methods and is examined by analysing multiple scRNA-seq datasets. Our results suggest that different situations call for different methods and the constraint-based PC algorithm plus kernel-based conditional independence tests suit for most situations. Relevant issues are discussed and tips for best practices are recommended.

Data availability

Only public data were used. Links to all data are provided in the manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Yujian Wen

    Bioinformatics Section, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jielong Huang

    Bioinformatics Section, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Shuhui Guo

    Bioinformatics Section, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yehezqel Elyahu

    The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Alon Monsonego

    The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Hai Zhang

    Network Center, Southern Medical University, Guangzhou, China
    For correspondence
    zhangh@smu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Yanqing Ding

    Department of Pathology, Southern Medical University, Guangzhou, China
    For correspondence
    dyqgz@126.com
    Competing interests
    The authors declare that no competing interests exist.
  8. Hao Zhu

    Bioinformatics Section, Southern Medical University, Guangzhou, China
    For correspondence
    zhuhao@smu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7384-3840

Funding

National Natural Science Foundation of China (31771456)

  • Hao Zhu

Department of Science and Technology of Guangdong Province (2020A1515010803)

  • Hao Zhu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Babak Momeni, Boston College, United States

Version history

  1. Received: June 28, 2022
  2. Preprint posted: August 19, 2022 (view preprint)
  3. Accepted: May 1, 2023
  4. Accepted Manuscript published: May 2, 2023 (version 1)
  5. Version of Record published: May 30, 2023 (version 2)

Copyright

© 2023, Wen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,825
    views
  • 220
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yujian Wen
  2. Jielong Huang
  3. Shuhui Guo
  4. Yehezqel Elyahu
  5. Alon Monsonego
  6. Hai Zhang
  7. Yanqing Ding
  8. Hao Zhu
(2023)
Applying causal discovery to single-cell analyses using CausalCell
eLife 12:e81464.
https://doi.org/10.7554/eLife.81464

Share this article

https://doi.org/10.7554/eLife.81464

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.