The genetic risk of gestational diabetes in South Asian women
Abstract
South Asian women are at increased risk of developing gestational diabetes (GDM). Few studies have investigated the genetic contributions to GDM risk. We investigated the association of a type 2 diabetes (T2D) polygenic risk score (PRS), on its own, and with GDM risk factors, on GDM-related traits using data from two birth cohorts in which South Asian women were enrolled during pregnancy. 837 and 4,372 pregnant South Asian women from the SouTh Asian BiRth CohorT (START) and Born in Bradford (BiB) cohort studies underwent a 75-gram glucose tolerance test. PRSs were derived using GWAS results from an independent multi-ethnic study (~18% South Asians). Associations with fasting plasma glucose (FPG); 2h post-load glucose (2hG); area under the curve glucose; and GDM were tested using linear and logistic regressions. The population attributable fraction (PAF) of the PRS was calculated. Every 1 SD increase in the PRS was associated with a 0.085 mmol/L increase in FPG ([95%CI=0.07-0.10], P=2.85 × 10-20); 0.21 mmol/L increase in 2hG ([95%CI=0.16-0.26], P=5.49 × 10-16); and a 45% increase in the risk of GDM ([95%CI=32-60%], P=2.27 × 10-14), independent of parental history of diabetes and other GDM risk factors. PRS tertile 3 accounted for 12.5% of the population's GDM alone, and 21.7% when combined with family history. A few weak PRS and GDM risk factors interactions modulating FPG and GDM were observed. Together, these results show that a T2D PRS and family history of diabetes are strongly and independently associated with multiple GDM-related traits in women of South Asian descent, an effect that could be modulated by other environmental factors.
Data availability
Data from START is not publicly available, since the study is bound by consent which indicates the data will not be used by an outside group. Requests for collaboration or replication will be considered for research purposes only (no commercial use allowed, as per the study's informed consent). Requests should be addressed to the study's principal investigator (Sonia Anand, anands@mcmaster.ca) via a form which will be provided upon request by emailing natcampb@mcmaster.ca. The request will be evaluated by PIs and co-investigators, and projects deemed of scientific interest will be further evaluated/validated by local REB chair. Born in Bradford data are available for research purposes only by sending an expression of interest form downloadable from https://borninbradford.nhs.uk/wp-content/uploads/BiB_EoI_v3.1_10.05.21.doct to borninbradford@bthft.nhs.uk . The proposal will be reviewed by BiB's executive team. If the request is approved, the requester will be asked to sign a Data Sharing Contract and a Data Sharing Agreement. Full details on how to access data and forms can be found here https://borninbradford.nhs.uk/research/how-to-access-data/. The code used to analyze the data is available at https://github.com/AmelLamri/Paper_T2dPrsGdm_StartBiB. All Sharable processed versions of the datasets used in the manuscript are made available as supplementary material or at https://github.com/AmelLamri/Paper_T2dPrsGdm_StartBiB.
Article and author information
Author details
Funding
Canadian Institutes of Health Research (Project grant 298104;Foundation grant number: FDN-143255)
- Sonia S Anand
Bristol NIHR Biomedical Research Center
- Deborah A Lawlor
UK Medical Research Council (MC_UU_00011/6)
- Deborah A Lawlor
British Heart Foundation (CH/F/20/90003)
- Deborah A Lawlor
Canada Research Chairs
- Sonia S Anand
Heart and Stroke Foundation/Michael G. DeGroote Chair
- Sonia S Anand
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All START and BiB participants provided informed consent. The START study was approved by local ethics committees (Hamilton Integrated Research Ethics Board [ID:10-640], William Osler Health System [ID:11-0001], and Trillium Health Partners [RCC:11-018, ID:492]). Ethical approval for all aspects of the research was granted by Bradford Research Ethics Committee [Ref 07/H1302/112].
Copyright
© 2022, Lamri et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,671
- views
-
- 134
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Genetics and Genomics
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.
-
- Chromosomes and Gene Expression
- Genetics and Genomics
The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions. Finally, leveraging data from published CRISPRi screens, we found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.