Contrasting action and posture coding with hierarchical deep neural network models of proprioception

  1. Kai J Sandbrink
  2. Pranav Mamidanna
  3. Claudio Michaelis
  4. Matthias Bethge
  5. Mackenzie W Mathis  Is a corresponding author
  6. Alexander Mathis  Is a corresponding author
  1. École Polytechnique Fédérale de Lausanne, Switzerland
  2. Eberhard Karls Universität Tübingen, Germany

Abstract

Biological motor control is versatile, efficient, and depends on proprioceptive feedback. Muscles are flexible and undergo continuous changes, requiring distributed adaptive control mechanisms that continuously account for the body's state. The canonical role of proprioception is representing the body state. We hypothesize that the proprioceptive system could also be critical for high-level tasks such as action recognition. To test this theory, we pursued a task-driven modeling approach, which allowed us to isolate the study of proprioception. We generated a large synthetic dataset of human arm trajectories tracing characters of the Latin alphabet in 3D space, together with muscle activities obtained from a musculoskeletal model and model-based muscle spindle activity. Next, we compared two classes of tasks: trajectory decoding and action recognition, which allowed us to train hierarchical models to decode either the position and velocity of the end-effector of one's posture or the character (action) identity from the spindle firing patterns. We found that artificial neural networks could robustly solve both tasks, and the networks'units show tuning properties similar to neurons in the primate somatosensory cortex and the brainstem. Remarkably, we found uniformly distributed directional selective units only with the action-recognition-trained models and not the trajectory-decoding-trained models. This suggests that proprioceptive encoding is additionally associated with higher-level functions such as action recognition and therefore provides new, experimentally testable hypotheses of how proprioception aids in adaptive motor control.

Data availability

The computational dataset and code to create it is available at https://github.com/amathislab/DeepDraw

Article and author information

Author details

  1. Kai J Sandbrink

    Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Genève, Switzerland
    Competing interests
    No competing interests declared.
  2. Pranav Mamidanna

    Tübingen AI Center, Eberhard Karls Universität Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  3. Claudio Michaelis

    Tübingen AI Center, Eberhard Karls Universität Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  4. Matthias Bethge

    Tübingen AI Center, Eberhard Karls Universität Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6417-7812
  5. Mackenzie W Mathis

    Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Genève, Switzerland
    For correspondence
    mackenzie@post.harvard.edu
    Competing interests
    Mackenzie W Mathis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7368-4456
  6. Alexander Mathis

    Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Genève, Switzerland
    For correspondence
    alexander.mathis@epfl.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3777-2202

Funding

Swiss National Science Foundation (310030_201057)

  • Mackenzie W Mathis

Swiss National Science Foundation (310030_212516)

  • Alexander Mathis

Rowland Institute at Harvard

  • Kai J Sandbrink
  • Mackenzie W Mathis
  • Alexander Mathis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Sandbrink et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,072
    views
  • 357
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai J Sandbrink
  2. Pranav Mamidanna
  3. Claudio Michaelis
  4. Matthias Bethge
  5. Mackenzie W Mathis
  6. Alexander Mathis
(2023)
Contrasting action and posture coding with hierarchical deep neural network models of proprioception
eLife 12:e81499.
https://doi.org/10.7554/eLife.81499

Share this article

https://doi.org/10.7554/eLife.81499

Further reading

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.