A toxin-antidote selfish element increases fitness of its host

  1. Lijiang Long
  2. Wen Xu
  3. Francisco Valencia
  4. Annalise B Paaby  Is a corresponding author
  5. Patrick T McGrath  Is a corresponding author
  1. Georgia Institute of Technology, United States

Abstract

Selfish genetic elements can promote their transmission at the expense of individual survival, creating conflict between the element and the rest of the genome. Recently, a large number of toxin-antidote (TA) post-segregation distorters have been identified in non-obligate outcrossing nematodes. Their origin and the evolutionary forces that keep them at intermediate population frequencies are poorly understood. Here, we study a TA element in C. elegans called zeel-1;peel-1. Two major haplotypes of this locus, with and without the selfish element, segregate in C. elegans. We evaluate the fitness consequences of the zeel-1;peel-1 element outside of its role in gene drive in non-outcrossing animals, and demonstrate that loss of the toxin peel-1 decreased fitness of hermaphrodites and resulted in reductions in fecundity and body size. These findings suggest a biological role for peel-1 beyond toxin lethality. This work demonstrates that a TA element can provide a fitness benefit to its hosts, either during their initial evolution or by being co-opted by the animals following their selfish spread. These findings guide our understanding on how TA elements can remain in a population where gene drive is minimized, helping resolve the mystery of prevalent TA elements in selfing animals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures . Simulation code is included in a github: https://github.com/lijiang-long/TA_modeling.

Article and author information

Author details

  1. Lijiang Long

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9897-5900
  2. Wen Xu

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2085-7223
  3. Francisco Valencia

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Annalise B Paaby

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    For correspondence
    paaby@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1422-047X
  5. Patrick T McGrath

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    For correspondence
    patrick.mcgrath@biology.gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1598-3746

Funding

National Institutes of Health (GM139594)

  • Patrick T McGrath

National Institutes of Health (GM119744)

  • Annalise B Paaby

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Long et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 719
    views
  • 116
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lijiang Long
  2. Wen Xu
  3. Francisco Valencia
  4. Annalise B Paaby
  5. Patrick T McGrath
(2023)
A toxin-antidote selfish element increases fitness of its host
eLife 12:e81640.
https://doi.org/10.7554/eLife.81640

Share this article

https://doi.org/10.7554/eLife.81640

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.