Molecular mechanism of active Cas7-11 in processing CRISPR RNA and interfering target RNA

  1. Hemant N Goswami
  2. Jay Rai
  3. Anuska Das
  4. Hong Li  Is a corresponding author
  1. Florida State University, United States

Abstract

Cas7-11 is a Type III-E CRISPR Cas effector that confers programmable RNA cleavage and has potential applications in RNA interference. Cas7-11 encodes a single polypeptide containing four Cas7- and one Cas11-like segments that obscures the distinction between the multi-subunit Class 1 and the single-subunit Class-2 CRISPR-Cas systems. We report a cryo-EM structure of the active Cas7-11 from Desulfonema ishimotonii (DiCas7-11) that reveals the molecular basis for RNA processing and interference activities. DiCas7-11 arranges its Cas7- and Cas11-like domains in an extended form that resembles the backbone made up by four Cas7 and one Cas11 subunits in the multi-subunit enzymes. Unlike the multi-subunit enzymes, however, the backbone of DiCas7-11 contains evolutionarily different Cas7 and Cas11 domains, giving rise to their unique functionality. The first Cas7-like domain nearly engulfs the last 15 direct repeat nucleotides in processing and recognition of the CRISPR RNA, and its free-standing fragment retains most of the activity. Both the second and the third Cas7-like domains mediate target RNA cleavage in a metal-dependent manner. The structure and mutational data indicate that the long variable insertion to the fourth Cas7 domain has little impact to RNA processing or targeting, suggesting the possibility for engineering a compact and programmable RNA interference tool.

Data availability

Structure model generated from this study is deposited to Protein Data Bank under the accession code 8D1V. The cryoEM map is deposited to EMDB under the accession code EMD-27138.

The following data sets were generated

Article and author information

Author details

  1. Hemant N Goswami

    Institute of Molecular Biophysics, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jay Rai

    Institute of Molecular Biophysics, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anuska Das

    Institute of Molecular Biophysics, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hong Li

    Department of Chemistry and Biochemistry, Florida State University, Tallahassee, United States
    For correspondence
    hong.li@fsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2046-9861

Funding

National Institutes of Health (GM101343)

  • Hong Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Version history

  1. Preprint posted: June 23, 2022 (view preprint)
  2. Received: July 7, 2022
  3. Accepted: September 30, 2022
  4. Accepted Manuscript published: October 3, 2022 (version 1)
  5. Version of Record published: November 2, 2022 (version 2)

Copyright

© 2022, Goswami et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,206
    views
  • 400
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hemant N Goswami
  2. Jay Rai
  3. Anuska Das
  4. Hong Li
(2022)
Molecular mechanism of active Cas7-11 in processing CRISPR RNA and interfering target RNA
eLife 11:e81678.
https://doi.org/10.7554/eLife.81678

Share this article

https://doi.org/10.7554/eLife.81678

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.