Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A
Abstract
TMEM87s are eukaryotic transmembrane proteins with two members (TMEM87A and TMEM87B) in humans. TMEM87s have proposed roles in protein transport to and from the Golgi, as mechanosensitive ion channels, and in developmental signaling. TMEM87 disruption has been implicated in cancers and developmental disorders. To better understand TMEM87 structure and function, we determined a cryo-EM structure of human TMEM87A in lipid nanodiscs. TMEM87A consists of a Golgi-dynamics (GOLD) domain atop a membrane spanning seven-transmembrane helix domain with a large cavity open to solution and the membrane outer leaflet. Structural and functional analyses suggest TMEM87A may not function as an ion channel or G-protein coupled receptor. We find TMEM87A shares its characteristic domain arrangement with seven other proteins in humans; three that had been identified as evolutionary related (TMEM87B, GPR107, and GPR108) and four previously unrecognized homologs (GPR180, TMEM145, TMEM181, and WLS)). Among these structurally related GOLD domain seven-transmembrane helix (GOST) proteins, WLS is best characterized as a membrane trafficking and secretion chaperone for lipidated Wnt signaling proteins. We find key structural determinants for WLS function are conserved in TMEM87A. We propose TMEM87A and structurally homologous GOST proteins could serve a common role in trafficking membrane-associated cargo.
Data availability
All data associated with this study ware publicly available. The TMEM87A model is in the Protein Data Bank (PDB) under 8CTJ, the final maps are in the Electron Microscopy Data Bank (EMDB) under EMD-26992, and the original micrograph movies and final particle stack are in the Electron Microscopy Public Image Archive (EMPIAR) under EMPIAR-11045.
-
Cryo-EM structure of TMEM87AProtein Data Bank, doi: 10.2210/pdb8CTJ/pdb.
-
Cryo-EM structure of TMEM87AElectron Microscopy Data Bank (EMDB) under EMD-26992.
-
Cryo-EM structure of the GOLD-domain seven-transmembrane protein TMEM87AElectron Microscopy Public Image Archive (EMPIAR) under EMPIAR-11045.
Article and author information
Author details
Funding
New York Stem Cell Foundation
- Stephen G Brohawn
National Institute of General Medical Sciences (GM123496)
- Stephen G Brohawn
McKnight Foundation
- Stephen G Brohawn
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Hoel et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,083
- views
-
- 513
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 13
- citations for umbrella DOI https://doi.org/10.7554/eLife.81704