DNA-stimulated liquid-liquid phase separation by eukaryotic topoisomerase II modulates catalytic function

  1. Joshua Jeong
  2. Joyce H Lee
  3. Claudia C Carcamo
  4. Matthew W Parker
  5. James M Berger  Is a corresponding author
  1. Johns Hopkins University, United States
  2. The University of Texas Southwestern Medical Center, United States

Abstract

Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - e.g., decatenation vs. catenation is poorly understood. Here we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.

Data availability

Dataset information was uploaded to Dryad.DOI: https://doi.org/10.5061/dryad.z08kprrgc

The following data sets were generated

Article and author information

Author details

  1. Joshua Jeong

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Joyce H Lee

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Claudia C Carcamo

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2646-188X
  4. Matthew W Parker

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7571-0010
  5. James M Berger

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    For correspondence
    jmberger@jhmi.edu
    Competing interests
    James M Berger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-1240

Funding

National Institute of General Medical Sciences (T32-GM7445-43)

  • Joshua Jeong

National Cancer Institute (R35-CA263778)

  • James M Berger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Jeong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,536
    views
  • 417
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua Jeong
  2. Joyce H Lee
  3. Claudia C Carcamo
  4. Matthew W Parker
  5. James M Berger
(2022)
DNA-stimulated liquid-liquid phase separation by eukaryotic topoisomerase II modulates catalytic function
eLife 11:e81786.
https://doi.org/10.7554/eLife.81786

Share this article

https://doi.org/10.7554/eLife.81786