Kindlin-2 inhibits TNF/NF-κB-Caspase 8 pathway in hepatocytes to maintain liver development and function

  1. Huanqing Gao
  2. Yiming Zhong
  3. Liang Zhou
  4. Sixiong Lin
  5. Xiaoting Hou
  6. Zhen Ding
  7. Yan Li
  8. Qing Yao
  9. Huiling Cao
  10. Xuenong Zou
  11. Di Chen
  12. Xiaochun Bai  Is a corresponding author
  13. Guozhi Xiao  Is a corresponding author
  1. Southern Taiwan University of Science and Technology, China
  2. Southern University of Science and Technology, China
  3. Sun Yat-sen University, China
  4. Chinese Academy of Sciences, China
  5. Southern Medical University, China

Abstract

Inflammatory liver diseases are a major cause of morbidity and mortality worldwide; however, underlying mechanisms are incompletely understood. Here we show that deleting the focal adhesion protein Kindlin-2 expression in hepatocytes using the Alb-Cre transgenic mice causes a severe inflammation, resulting in premature death. Kindlin-2 loss accelerates hepatocyte apoptosis with subsequent compensatory cell proliferation and accumulation of the collagenous extracellular matrix, leading to massive liver fibrosis and dysfunction. Mechanistically, Kindlin-2 loss abnormally activates the tumor necrosis factor (TNF) pathway. Blocking activation of the TNF signaling pathway by deleting TNF receptor or deletion of Caspase 8 expression in hepatocytes essentially restores liver function and prevents premature death caused by Kindlin-2 loss. Finally, of translational significance, adeno-associated virus mediated overexpression of Kindlin-2 in hepatocytes attenuates the D-galactosamine and lipopolysaccharide-induced liver injury and death in mice. Collectively, we establish that Kindlin-2 acts as a novel intrinsic inhibitor of the TNF pathway to maintain liver homeostasis and may define a useful therapeutic target for liver diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-7 and supplementary figures.

Article and author information

Author details

  1. Huanqing Gao

    Department of Biochemistry, Southern Taiwan University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8567-3583
  2. Yiming Zhong

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  3. Liang Zhou

    Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
    Competing interests
    No competing interests declared.
  4. Sixiong Lin

    Department of Spinal Surgery, Sun Yat-sen University, Guangzhou, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7155-5044
  5. Xiaoting Hou

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Zhen Ding

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  7. Yan Li

    Department of Biology, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  8. Qing Yao

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  9. Huiling Cao

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    Competing interests
    No competing interests declared.
  10. Xuenong Zou

    Department of Spinal Surgery, Sun Yat-sen University, Guangzhou, China
    Competing interests
    No competing interests declared.
  11. Di Chen

    Research Center for Computer-aided Drug Discovery, Chinese Academy of Sciences, Shenzhen, China
    Competing interests
    Di Chen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4258-3457
  12. Xiaochun Bai

    Department of Cell Biology, Southern Medical University, Guangzhou, China
    For correspondence
    baixc15@smu.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9631-4781
  13. Guozhi Xiao

    Department of Biochemistry, Southern University of Science and Technology, Shenzhen, China
    For correspondence
    xiaogz@sustech.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4269-2450

Funding

National Key Research and Development Program of China (2019YFA0906004)

  • Guozhi Xiao

National Natural Science Foundation of China (82230081,82250710175,82172375,81991513 and 81870532)

  • Guozhi Xiao

Shenzhen Municipal Science and Technology Innovation Council (JCYJ20180302174246105)

  • Huanqing Gao

Shenzhen Municipal Science and Technology Innovation Council (JCYJ20220818100617036,ZDSYS20140509142721429)

  • Guozhi Xiao

Guangdong Provincial Science and Technology Innovation Council Grant (2017B030301018)

  • Guozhi Xiao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved and conducted in the specific pathogen free (SPF) Experimental Animal Center of Southern University of Science and Technology (Approval number: 20200074).

Copyright

© 2023, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 819
    views
  • 168
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huanqing Gao
  2. Yiming Zhong
  3. Liang Zhou
  4. Sixiong Lin
  5. Xiaoting Hou
  6. Zhen Ding
  7. Yan Li
  8. Qing Yao
  9. Huiling Cao
  10. Xuenong Zou
  11. Di Chen
  12. Xiaochun Bai
  13. Guozhi Xiao
(2023)
Kindlin-2 inhibits TNF/NF-κB-Caspase 8 pathway in hepatocytes to maintain liver development and function
eLife 12:e81792.
https://doi.org/10.7554/eLife.81792

Share this article

https://doi.org/10.7554/eLife.81792

Further reading

    1. Cell Biology
    Mitsuhiro Abe, Masataka Yanagawa ... Yasushi Sako
    Research Article

    Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.

    1. Cell Biology
    Jeongsik Kim, Dahyun Kim ... Dae-Sik Lim
    Research Article

    Cell survival in metazoans depends on cell attachment to the extracellular matrix (ECM) or to neighboring cells. Loss of such attachment triggers a type of programmed cell death known as anoikis, the acquisition of resistance to which is a key step in cancer development. The mechanisms underlying anoikis resistance remain unclear, however. The intracellular F-actin cytoskeleton plays a key role in sensing the loss of cell–ECM attachment, but how its disruption affects cell fate during such stress is not well understood. Here, we reveal a cell survival strategy characterized by the formation of a giant unilocular vacuole (GUVac) in the cytoplasm of the cells whose actin cytoskeleton is disrupted during loss of matrix attachment. Time-lapse imaging and electron microscopy showed that large vacuoles with a diameter of >500 nm accumulated early after inhibition of actin polymerization in cells in suspension culture, and that these vacuoles subsequently coalesced to form a GUVac. GUVac formation was found to result from a variation of a macropinocytosis-like process, characterized by the presence of inwardly curved membrane invaginations. This phenomenon relies on both F-actin depolymerization and the recruitment of septin proteins for micron-sized plasma membrane invagination. The vacuole fusion step during GUVac formation requires PI(3)P produced by VPS34 and PI3K-C2α on the surface of vacuoles. Furthermore, its induction after loss of matrix attachment conferred anoikis resistance. Our results thus show that the formation of a previously unrecognized organelle promotes cell survival in the face of altered actin and matrix environments.