Spatial frequency representation in V2 and V4 of macaque monkey

  1. Ying Zhang
  2. Kenneth E Schriver  Is a corresponding author
  3. Jia Ming Hu  Is a corresponding author
  4. Anna Wang Roe  Is a corresponding author
  1. Zhejiang University, China

Abstract

Spatial frequency (SF) is an important attribute in the visual scene and is a defining feature of visual processing channels. However, there remain many unsolved questions about how extrastriate areas in primate visual cortex codes this fundamental information. Here, using intrinsic signal optical imaging in visual areas of V2 and V4 of macaque monkeys, we quantify the relationship between SF maps and (1) visual topography and (2) color and orientation maps. We find that in orientation regions, low to high SF is mapped orthogonally to orientation; in color regions, which are reported to contain orthogonal axes of color and lightness, low spatial frequencies (SFs) tend to be represented more frequently than high SFs. This supports a population-based SF fluctuation related to the 'color/orientation' organizations. We propose a generalized hypercolumn model across cortical areas, comprised of two orthogonal parameters with additional parameters.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. All data used in the figures have been deposited at Open Science Framework (https://osf.io/agkr7/) and are publicly available as of the date of publication.

Article and author information

Author details

  1. Ying Zhang

    Department of Neurosurgery, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9631-8280
  2. Kenneth E Schriver

    Department of Neurosurgery, Zhejiang University, Hangzhou, China
    For correspondence
    kenschriver@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  3. Jia Ming Hu

    Department of Neurology, Zhejiang University, Hangzhou, China
    For correspondence
    hujiaming@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Wang Roe

    Department of Neurosurgery, Zhejiang University, Hangzhou, China
    For correspondence
    annawang@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4146-9705

Funding

National Key Research and Development Program of China (2018YFA0701400)

  • Anna Wang Roe

China Brain Initiative (2021ZD0200401)

  • Anna Wang Roe

National Natural Science Foundation of China (31627802,81961128029,U20A20221)

  • Anna Wang Roe

China Postdoctoral Science Foundation (2020M681829)

  • Jia Ming Hu

National Natural Science Foundation of China (32100802)

  • Jia Ming Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the National Institutes of Health Guidelines and were approved by the Zhejiang University Institutional Animal Care and Use Committee (Permit Number: ZJU20200022 and ZJU20200023).

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Zhang
  2. Kenneth E Schriver
  3. Jia Ming Hu
  4. Anna Wang Roe
(2023)
Spatial frequency representation in V2 and V4 of macaque monkey
eLife 12:e81794.
https://doi.org/10.7554/eLife.81794

Share this article

https://doi.org/10.7554/eLife.81794

Further reading

    1. Neuroscience
    Björn Herrmann
    Research Article

    Neural activity in auditory cortex tracks the amplitude-onset envelope of continuous speech, but recent work counterintuitively suggests that neural tracking increases when speech is masked by background noise, despite reduced speech intelligibility. Noise-related amplification could indicate that stochastic resonance – the response facilitation through noise – supports neural speech tracking, but a comprehensive account is lacking. In five human electroencephalography experiments, the current study demonstrates a generalized enhancement of neural speech tracking due to minimal background noise. Results show that (1) neural speech tracking is enhanced for speech masked by background noise at very high signal-to-noise ratios (~30 dB SNR) where speech is highly intelligible; (2) this enhancement is independent of attention; (3) it generalizes across different stationary background maskers, but is strongest for 12-talker babble; and (4) it is present for headphone and free-field listening, suggesting that the neural-tracking enhancement generalizes to real-life listening. The work paints a clear picture that minimal background noise enhances the neural representation of the speech onset-envelope, suggesting that stochastic resonance contributes to neural speech tracking. The work further highlights non-linearities of neural tracking induced by background noise that make its use as a biological marker for speech processing challenging.

    1. Neuroscience
    Donald Iain MacDonald, Monessha Jayabalan ... Alexander Theodore Chesler
    Research Article

    The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed, we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.