Coevolution-based prediction of key allosteric residues for protein function regulation

  1. Juan Xie
  2. Weilin Zhang
  3. Xiaolei Zhu
  4. Minghua Deng
  5. Luhua Lai  Is a corresponding author
  1. Peking University, China
  2. Anhui Agricultural University, China

Abstract

Allostery is fundamental to many biological processes. Due to the distant regulation nature, how allosteric mutations, modifications and effector binding impact protein function is difficult to forecast. In protein engineering, remote mutations cannot be rationally designed without large-scale experimental screening. Allosteric drugs have raised much attention due to their high specificity and possibility of overcoming existing drug-resistant mutations. However, optimization of allosteric compounds remains challenging. Here, we developed a novel computational method KeyAlloSite to predict allosteric site and to identify key allosteric residues (allo-residues) based on the evolutionary coupling model. We found that protein allosteric sites are strongly coupled to orthosteric site compared to non-functional sites. We further inferred key allo-residues by pairwise comparing the difference of evolutionary coupling scores of each residue in the allosteric pocket with the functional site. Our predicted key allo-residues are in accordance with previous experimental studies for typical allosteric proteins like BCR-ABL1, Tar and PDZ3, as well as key cancer mutations. We also showed that KeyAlloSite can be used to predict key allosteric residues distant from the catalytic site that are important for enzyme catalysis. Our study demonstrates that weak coevolutionary couplings contain important information of protein allosteric regulation function. KeyAlloSite can be applied in studying the evolution of protein allosteric regulation, designing and optimizing allosteric drugs, performing functional protein design and enzyme engineering.

Data availability

All data that support the results of this study are included in the manuscript, supplementary files, and GitHub repository(https://github.com/huilan1210/KeyAlloSite). Source Data files have been provided for all Figures(except Figure 6 and Figure 1-figure supplement 1).

The following previously published data sets were used

Article and author information

Author details

  1. Juan Xie

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Weilin Zhang

    College of Chemistry and Molecular Engineering, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaolei Zhu

    School of Sciences, Anhui Agricultural University, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Minghua Deng

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Luhua Lai

    College of Chemistry and Molecular Engineering, Peking University, Beijing, China
    For correspondence
    lhlai@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8343-7587

Funding

National Key R&D Program of China (2022YFA1303700)

  • Luhua Lai

National Natural Science Foundation of China (21633001,22237002)

  • Luhua Lai

Chinese Academy of Medical Sciences (2021-I2M-5-014)

  • Luhua Lai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,705
    views
  • 464
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Xie
  2. Weilin Zhang
  3. Xiaolei Zhu
  4. Minghua Deng
  5. Luhua Lai
(2023)
Coevolution-based prediction of key allosteric residues for protein function regulation
eLife 12:e81850.
https://doi.org/10.7554/eLife.81850

Share this article

https://doi.org/10.7554/eLife.81850

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Amanda Mixon Blackwell, Yasaman Jami-Alahmadi ... Paul A Sigala
    Research Article

    Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.