Fecal transplant from myostatin deletion pigs positively impacts the gut-muscle axis
Abstract
The host genome may influence the composition of the intestinal microbiota, and the intestinal microbiota has a significant effect on muscle growth and development. In this study, we found that the deletion of the myostatin (MSTN) gene positively regulates the expression of the intestinal tight junction-related genes TJP1 and OCLN through the myosin light-chain kinase/myosin light chain pathway. The intestinal structure of MSTN−/− pigs differed from wild-type, including by the presence of a thicker muscularis and longer plicae. Together, these changes affect the structure of intestinal microbiota. Mice transplanted with the intestinal microbiota of MSTN−/− pigs had myofibers with larger cross-sectional areas and higher fast-twitch glycolytic muscle mass. Microbes responsible for the production of short-chain fatty acids (SCFAs) were enriched in both the MSTN−/− pigs and recipient mice, and SCFAs levels were elevated in the colon contents. We also demonstrated that valeric acid stimulates type IIb myofiber growth by activating the Akt/mTOR pathway via G protein-coupled receptor 43 and ameliorates dexamethasone-induced muscle atrophy. This is the first study to identify the MSTN gene-gut microbiota-SCFA axis and its regulatory role in fast-twitch glycolytic muscle growth.
Data availability
The raw reads of 16s rRNA gene sequences have been submitted to the NCBI BioSample database (Porcine data: PRJNA743164; Mice data: PRJNA743401).
-
pig gut metagenome Raw sequence readsNCBI BioProject, PRJNA743164.
-
mice gut metagenome Raw sequence readsNCBI BioProject, PRJNA743401.
-
Original data of Luo et alScience Data Bank, doi:10.57760/sciencedb.06767.
Article and author information
Author details
Funding
National Natural Science Foundation of China (32260817)
- Jin-Dan Kang
National Natural Science Foundation of China (32260026)
- Lin-Hu Quan
Changbai Mountain Talent Project of Jilin Province (000007)
- Lin-Hu Quan
Higher Education Discipline Innovation Project (D18012)
- Lin-Hu Quan
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The animal study was approved by the Ethics Committee of Yanbian University (approval number SYXK2020-0009).
Copyright
© 2023, Luo et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,259
- views
-
- 298
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.
-
- Cell Biology
- Developmental Biology
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.