Critical roles for 'housekeeping' nucleases in Type III CRISPR-Cas immunity

  1. Lucy Chou-Zheng
  2. Asma Hatoum-Aslan  Is a corresponding author
  1. University of Illinois Urbana-Champaign, United States

Abstract

CRISPR-Cas systems are a family of adaptive immune systems that use small CRISPR RNAs (crRNAs) and CRISPR-associated (Cas) nucleases to protect prokaryotes from invading plasmids and viruses (i.e. phages). Type III systems launch a multi-layered immune response that relies upon both Cas and non-Cas cellular nucleases, and although the functions of Cas components have been well described, the identities and roles of non-Cas participants remain poorly understood. Previously, we showed that the Type III-A CRISPR-Cas system in Staphylococcus epidermidis employs two degradosome-associated nucleases, PNPase and RNase J2, to promote crRNA maturation and eliminate invading nucleic acids (Chou-Zheng and Hatoum-Aslan, 2019). Here, we identify RNase R as a third 'housekeeping' nuclease critical for immunity. We show that RNase R works in concert with PNPase to complete crRNA maturation, and identify specific interactions with Csm5, a member of the Type III effector complex, which facilitate nuclease recruitment/stimulation. Further, we demonstrate that RNase R and PNPase are required to maintain robust anti-plasmid immunity, particularly when targeted transcripts are sparse. Altogether, our findings expand the known repertoire of accessory nucleases required for Type III immunity and highlight the remarkable capacity of these systems to interface with diverse cellular pathways to ensure successful defense.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 4, 5, 6, Figure 1-figure supplement 1, Figure 2-figure supplement 1, Figure 3-figure supplement 1, Figure 3-figure supplement 2, Figure 5-figure supplement 1, and Figure 6-figure supplement 1. Corresponding source data files are called: Figure 1-source data 1, Figure 1-source data 2, Figure 1-source data 3, Figure 2-source data 1, Figure 2-source data 2, Figure 2-source data 3, Figure 2-source data 4, Figure 3-source data 1, Figure 3-source data 2, Figure 4-source data 1, Figure 4-source data 2, Figure 4-source data 3, Figure 5-source data 1, Figure 5-source data 2, Figure 5-source data 3, Figure 6-source data 1, Figure 6-source data 2, Figure 1-figure supplement 1-source data 1, Figure 1-figure supplement 1-source data 2, Figure 2-figure supplement 1-source data 1, Figure 3-figure supplement 1-source data 1, Figure 3-figure supplement 2-source data 1, Figure 3-figure supplement 2-source data 2, Figure 3-figure supplement 2-source data 3, Figure 5-figure supplement 1-source data 1, Figure 6-figure supplement 1-source data 1, Figure 6-figure supplement 1-source data 2, and Figure 6-figure supplement 1-source data 3.

Article and author information

Author details

  1. Lucy Chou-Zheng

    Microbiology Department, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Asma Hatoum-Aslan

    Microbiology Department, University of Illinois Urbana-Champaign, Urbana, United States
    For correspondence
    ahatoum@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2395-8900

Funding

National Science Foundation (MCB/2054755)

  • Asma Hatoum-Aslan

Burroughs Wellcome Fund

  • Asma Hatoum-Aslan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Blake Wiedenheft, Montana State University, United States

Version history

  1. Received: July 18, 2022
  2. Preprint posted: July 19, 2022 (view preprint)
  3. Accepted: December 7, 2022
  4. Accepted Manuscript published: December 8, 2022 (version 1)
  5. Version of Record published: December 19, 2022 (version 2)

Copyright

© 2022, Chou-Zheng & Hatoum-Aslan

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 776
    views
  • 128
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucy Chou-Zheng
  2. Asma Hatoum-Aslan
(2022)
Critical roles for 'housekeeping' nucleases in Type III CRISPR-Cas immunity
eLife 11:e81897.
https://doi.org/10.7554/eLife.81897

Share this article

https://doi.org/10.7554/eLife.81897

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Medicine
    2. Microbiology and Infectious Disease
    Yi-Shin Chang, Kai Huang ... David L Perkins
    Research Article

    Background:

    End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines.

    Methods:

    The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response.

    Results:

    Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development.

    Conclusions:

    Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD.

    Funding:

    F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.