Hepatic lipid overload triggers biliary epithelial cell activation via E2Fs

  1. Ece Yildiz
  2. Gaby El Alam
  3. Alessia Perino
  4. Antoine Jalil
  5. Pierre-Damien Denechaud
  6. Katharina Huber
  7. Lluis Fajas
  8. Johan Auwerx
  9. Giovanni Sorrentino
  10. Kristina Schoonjans  Is a corresponding author
  1. École Polytechnique Fédérale de Lausanne, Switzerland
  2. Inserm UMR1048, France
  3. University of Lausanne, Switzerland
  4. University of Trieste, Italy

Abstract

During severe or chronic hepatic injury, biliary epithelial cells (BECs) undergo rapid activation into proliferating progenitors, a crucial step required to establish a regenerative process known as ductular reaction (DR). While DR is a hallmark of chronic liver diseases, including advanced stages of non-alcoholic fatty liver disease (NAFLD), the early events underlying BEC activation are largely unknown. Here, we demonstrate that BECs readily accumulate lipids during high-fat diet feeding in mice and upon fatty acid treatment in BEC-derived organoids. Lipid overload induces metabolic rewiring to support the conversion of adult cholangiocytes into reactive BECs. Mechanistically, we found that lipid overload activates the E2F transcription factors in BECs, which drives cell cycle progression while promoting glycolytic metabolism. These findings demonstrate that fat overload is sufficient to reprogram BECs into progenitor cells in the early stages of NAFLD and provide new insights into the mechanistic basis of this process, revealing unexpected connections between lipid metabolism, stemness, and regeneration.

Data availability

Computational analysis was performed using established packages mentioned in previous sections, and no new code was generated. RNA-Seq data have been deposited in GEO under accession code GSE217739. Two publicly available RNA-Seq datasets of mouse BECs with accession numbers GSE123133 (Aloia et al., 2019) and GSE125688 (Pepe-Mooney et al., 2019) were downloaded from the GEO and used for GSEA and over-representation enrichment analysis as mentioned previously. Source code is available at https://github.com/auwerxlab/Yildiz_eLife_2023.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ece Yildiz

    Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Gaby El Alam

    Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Alessia Perino

    Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Antoine Jalil

    Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre-Damien Denechaud

    Institute of Metabolic and Cardiovascular Diseases, Inserm UMR1048, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3502-4814
  6. Katharina Huber

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Lluis Fajas

    Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1283-9503
  8. Johan Auwerx

    Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Giovanni Sorrentino

    Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Kristina Schoonjans

    Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    kristina.schoonjans@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1247-4265

Funding

École Polytechnique Fédérale de Lausanne

  • Kristina Schoonjans

Kristian Gerhard Jebsen Foundation

  • Kristina Schoonjans

Swiss National Science Foundation (310030_189178)

  • Kristina Schoonjans

Swiss National Science Foundation (31003A_179435)

  • Johan Auwerx

AIRC Start-Up 2020 (24322)

  • Giovanni Sorrentino

The authors declare no competing interests.

Ethics

Animal experimentation: All the animal experiments were authorized by the Veterinary Office of the Canton of Vaud, Switzerland, under license authorizations VD3721 and VD2627.b.

Copyright

© 2023, Yildiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ece Yildiz
  2. Gaby El Alam
  3. Alessia Perino
  4. Antoine Jalil
  5. Pierre-Damien Denechaud
  6. Katharina Huber
  7. Lluis Fajas
  8. Johan Auwerx
  9. Giovanni Sorrentino
  10. Kristina Schoonjans
(2023)
Hepatic lipid overload triggers biliary epithelial cell activation via E2Fs
eLife 12:e81926.
https://doi.org/10.7554/eLife.81926

Share this article

https://doi.org/10.7554/eLife.81926

Further reading

    1. Stem Cells and Regenerative Medicine
    Sujeethkumar Prithiviraj, Alejandro Garcia Garcia ... Paul E Bourgine
    Research Article

    Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joshua G Medina-Feliciano, Griselle Valentín-Tirado ... José E Garcia-Arraras
    Research Article

    In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.