Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs

  1. Samuel J Barnes
  2. Georg B Keller
  3. Tara Keck  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. Friedrich Miescher Institute, Switzerland
  3. University College London, United Kingdom

Abstract

Homeostatic regulation is essential for stable neuronal function. Several synaptic mechanisms of homeostatic plasticity have been described, but the functional properties of synapses involved in homeostasis are unknown. We used longitudinal two-photon functional imaging of dendritic spine calcium signals in visual and retrosplenial cortices of awake adult mice to quantify the sensory deprivation-induced changes in the responses of functionally identified spines. We found that spines whose activity selectively correlated with intrinsic network activity underwent TNF-α dependent homeostatic increases in their response amplitudes, but spines identified as responsive to sensory stimulation did not. We observed an increase in the global sensory-evoked responses following sensory deprivation, despite the fact that the identified sensory inputs did not strengthen. Instead, global sensory-evoked responses correlated with the strength of network-correlated inputs. Our results suggest that homeostatic regulation of global responses is mediated through changes to intrinsic network-correlated inputs rather than changes to identified sensory inputs thought to drive sensory processing.

Data availability

The pre-processed raw data can be accessed at https://doi.org/10.5281/zenodo.7399602. Data that has not been pre-processed is available upon request to any interested party, due to size constraints, by emailing georg.keller@fmi.ch, who will provide temporary transfer access for downloading the data. No proposal is required to access the data and there are not restrictions on who can access the data. Software for controlling the two-photon microscope and pre-processing of the calcium imaging data is available on https://sourceforge.net/projects/iris-scanning/.

The following data sets were generated

Article and author information

Author details

  1. Samuel J Barnes

    Department of Brain Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Georg B Keller

    Friedrich Miescher Institute, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1401-0117
  3. Tara Keck

    Department of Neuroscience, University College London, London, United Kingdom
    For correspondence
    t.keck@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6623-1037

Funding

Wellcome Trust (212264/Z/18/Z)

  • Tara Keck

European Research Council (homeostasis_in_vivo)

  • Tara Keck

Royal Society (Wolfson Research Award)

  • Tara Keck

Novartis Stiftung für Medizinisch-Biologische Forschung

  • Georg B Keller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko Goda, Okinawa Institute of Science and Technology, Japan

Ethics

Animal experimentation: Experiments were conducted in strict accordance with the United Kingdom Animals (Scientific Procedures) Act 1986, and were approved by the UCL Animal Welfare and Ethical Review Body (AWERB) and by the Veterinary Department of the Canton of Basel-Stadt, Switzerland.

Version history

  1. Received: July 18, 2022
  2. Preprint posted: August 5, 2022 (view preprint)
  3. Accepted: November 30, 2022
  4. Accepted Manuscript published: December 14, 2022 (version 1)
  5. Version of Record published: December 30, 2022 (version 2)

Copyright

© 2022, Barnes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,491
    views
  • 206
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel J Barnes
  2. Georg B Keller
  3. Tara Keck
(2022)
Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs
eLife 11:e81958.
https://doi.org/10.7554/eLife.81958

Share this article

https://doi.org/10.7554/eLife.81958

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.