Abstract

Obstructive sleep apnea (OSA) is characterized by sporadic collapse of the upper airway leading to periodic disruptions in breathing. Upper airway patency is governed by genioglossal nerve activity that originates from the hypoglossal motor nucleus. Mice with targeted deletion of the gene Hmox2, encoding the carbon monoxide (CO) producing enzyme, heme oxygenase-2 (HO-2), exhibit OSA, yet the contribution of central HO-2 dysregulation to the phenomenon is unknown. Using the rhythmic brainstem slice preparation that contains the preBötzinger complex (preBötC) and the hypoglossal nucleus, we tested the hypothesis that central HO-2 dysregulation weakens hypoglossal motoneuron output. Disrupting HO-2 activity increased the occurrence of subnetwork activity from the preBötC, which was associated with an increased irregularity of rhythmogenesis. These phenomena were also associated with the intermittent inability of the preBötC rhythm to drive output from the hypoglossal nucleus (i.e., transmission failures), and a reduction in the input-output relationship between the preBötC and the motor nucleus. HO-2 dysregulation reduced excitatory synaptic currents and intrinsic excitability in inspiratory hypoglossal neurons. Inhibiting activity of the CO-regulated H2S producing enzyme, cystathionine-g-lyase (CSE), reduced transmission failures in HO-2 null brainstem slices, which also normalized excitatory synaptic currents and intrinsic excitability of hypoglossal motoneurons. These findings demonstrate a hitherto uncharacterized modulation of hypoglossal activity through mutual interaction of HO‑2/CO and CSE/H2S, and support the potential importance of centrally‑derived gasotransmitter activity in regulating upper airway control.

Data availability

Numerical data used to generate figures is uploaded to Dryad. Source Data file names refer to current figure panels.

The following data sets were generated

Article and author information

Author details

  1. Brigitte M Browe

    Institute for Integrative Physiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ying-Jie Peng

    Institute for Integrative Physiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jayasri Nanduri

    Institute for Integrative Physiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nanduri R Prabhakar

    Institute for Integrative Physiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alfredo J Garcia III

    Institute for Integrative Physiology, University of Chicago, Chicago, United States
    For correspondence
    ajgarcia3@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5620-7519

Funding

National Heart, Lung, and Blood Institute (P01 HL144454)

  • Nanduri R Prabhakar

National Institute of Neurological Disorders and Stroke (R01NS107421)

  • Alfredo J Garcia III

National Institute on Drug Abuse (R01DA057767)

  • Alfredo J Garcia III

National Heart, Lung, and Blood Institute (R01HL163965)

  • Alfredo J Garcia III

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melissa Bates, University of Iowa, United States

Ethics

Animal experimentation: In accordance with National Institutes of Health guidelines, all animal protocols were performed with the approval of the Institute of Animal Care and Use Committee at The University of Chicago (ACUP 72486, ACUP 71811).

Version history

  1. Preprint posted: March 26, 2022 (view preprint)
  2. Received: July 19, 2022
  3. Accepted: January 18, 2023
  4. Accepted Manuscript published: January 19, 2023 (version 1)
  5. Version of Record published: February 28, 2023 (version 2)

Copyright

© 2023, Browe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 500
    Page views
  • 94
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brigitte M Browe
  2. Ying-Jie Peng
  3. Jayasri Nanduri
  4. Nanduri R Prabhakar
  5. Alfredo J Garcia III
(2023)
Gasotransmitter modulation of hypoglossal motoneuron activity
eLife 12:e81978.
https://doi.org/10.7554/eLife.81978

Share this article

https://doi.org/10.7554/eLife.81978

Further reading

    1. Neuroscience
    Harry Clark, Matthew F Nolan
    Research Article

    Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.