Alternative Splicing: A new role for Hif-1α
Animals have evolved complex respiratory systems which efficiently deliver oxygen to every part of their body. Still, bursts of oxygen shortages can occasionally take place when metabolic needs surpass supply. Long-distance flying, for example, requires desert locusts to consume 30–150 times more oxygen than they do at rest (Armstrong and Mordue, 1985).
In response, cells can recruit hypoxia-inducible factors – or Hif, for short – which are formed of combinations of Hif-α and Hif-ß modules. These highly conserved proteins can bind to genetic sequences (known as hypoxia-response elements) to regulate genes that control how cells and organisms adjust to a lack of oxygen (Schofield and Ratcliffe, 2004). Under normal conditions, Hif proteins undergo oxygen-dependent chemical modifications that lead to their degradation (Ivan et al., 2001; Min et al., 2002). Low levels of oxygen inhibit this process, stabilising the proteins and activating various hypoxia-related genes (Wenger et al., 2005).
Overall, regulating the activity of Hif proteins – and especially which genes they target – involves a wide range of pathways, molecules, and binding partners (Chandel et al., 2000; Guzy et al., 2005). These processes can even, on occasion, be independent of oxygen levels, allowing Hif proteins to participate in other types of life processes, such as the development of insect blood cells (Mukherjee et al., 2011).
In addition, several versions of the protein can exist within an organism. Some emerge from closely related Hif genes, but others are isoforms, being created from the same gene through various mechanisms. Now, in eLife, Le Kang, Bing Chen and colleagues at the Chinese Academy of Science and Hebei University – including Ding Ding as first author – report how an isoform of the Hif-1α gene contributes to the integrity and performance of insect muscles during flight (Ding et al., 2022).
The team focused on migratory locusts (Locusta migratoria), an agricultural pest that can fly hundreds of kilometers per day. Like all invertebrates, these insects express only one Hif-α gene, Hif-1α. Examining the entire coding sequence of this gene revealed that it leads to the production of two distinct isoforms (Hif-1α1 and Hif-1α2) via a process known as alternative splicing. This mechanism involves the cells reshuffling the coding elements present in the RNA transcripts of the Hif-1α gene, resulting in different proteins.
Ding et al. showed that in contrast to Hif-1α1 (which is only detectable under hypoxic conditions), Hif-1α2 lacks the domain required to respond to oxygen levels (Figure 1A). The isoform is abundantly expressed in flight muscles, regardless of oxygen concentration. Interestingly, the experiments showed that Hif-1α2 is essential for the prolonged flight performance of locusts, whereas Hif-1α1 has no effect on this trait.
The team then genetically manipulated locusts to silence the Hif-1α2 isoform, before examining gene expression profiles in these mutants and in normal insects. This highlighted 12 genes that were significantly downregulated when the isoform was knocked down. Amongst these, 11 are involved in the same energy-creating pathway; however, interfering with this molecular cascade had no discernible effects on the insects’ ability to perform long-term flights. As a result, Ding et al. propose that the pathway plays a role earlier on, as the locust takes off and starts to fly.
The remaining gene, which codes for the DJ-1 protein, helps to protect the organism against reactive oxygen species (or ROS). This class of harmful molecules is released by cellular activity. In flight muscles, their constant presence is correlated with high oxygen consumption, and increases when Hif-1α2 is knocked down. In addition, Ding et al. showed that DJ-1 is enriched in flight muscles; if removed, flight-induced ROS levels soar up and performance becomes impaired.
Finally, the team confirmed a new, non-canonical target for Hif-1α2 by showing that the isoform binds to the hypoxia-response elements present in the promoter of the DJ-1 gene, even when oxygen levels are normal (Figure 1B). Overall, Ding et al. propose that Hif-1α2 confers a physical advantage in prolonged flight by alleviating the damage linked to ROS while simultaneously maintaining efficient energy production during the initial stage of flight.
Insects were among the first animals to fly, but while some have evolved to be one the most efficient creatures to have taken to the skies, others are far less skilled. The oxygen-sensitive domain of Hif-1α has been under high selective pressure throughout evolution; the presence of a range of isoforms for this gene, including oxygen-insensitive variants, is likely to contribute to this divergence in flight performance (Graham and Presnell, 2017). Future studies should investigate exactly how Hif-1α2 is alternatively spliced in flight muscles and how it is controlled independently of oxygen, both in locusts and in other insects. A better grasp of the remarkable versatility of the Hif pathway, including in humans, could help to pinpoint the evolutionary and ecological significance of these genes, and why certain Hif proteins are involved in developmental conditions or cancer.
References
-
Oxygen consumption of flying locustsPhysiological Entomology 10:353–358.https://doi.org/10.1111/j.1365-3032.1985.tb00057.x
-
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensingThe Journal of Biological Chemistry 275:25130–25138.https://doi.org/10.1074/jbc.M001914200
-
Oxygen sensing by HIF hydroxylasesNature Reviews. Molecular Cell Biology 5:343–354.https://doi.org/10.1038/nrm1366
-
Integration of oxygen signaling at the consensus HREScience’s STKE 2005:re12.https://doi.org/10.1126/stke.3062005re12
Article and author information
Author details
Publication history
Copyright
© 2022, Shin and Shim
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 893
- views
-
- 185
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Computational and Systems Biology
Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.
-
- Cell Biology
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.