Fiber-specific structural properties relate to reading skills in children and adolescents

  1. Steven Lee Meisler  Is a corresponding author
  2. John Gabrieli
  1. Harvard University, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Recent studies suggest that the cross-sectional relationship between reading skills and white matter microstructure, as indexed by fractional anisotropy, is not as robust as previously thought. Fixel-based analyses yield fiber-specific micro- and macrostructural measures, overcoming several shortcomings of the traditional diffusion tensor model. We ran a whole-brain analysis investigating whether the product of fiber density and cross-section (FDC) related to single-word reading skills in a large, open, quality-controlled data set of 983 children and adolescents ages 6-18. We also compared FDC between participants with (n = 102) and without (n = 570) reading disabilities. We found that FDC positively related to reading skills throughout the brain, especially in left temporoparietal and cerebellar white matter, but did not differ between reading proficiency groups. Exploratory analyses revealed that among metrics from other diffusion models - DTI, DKI, and NODDI - only the orientation dispersion and neurite density indexes from NODDI were associated (inversely) with reading skills. The present findings further support the importance of left-hemisphere dorsal temporoparietal white matter tracts in reading. Additionally, these results suggest future DWI studies of reading and dyslexia should be designed to benefit from advanced diffusion models, include cerebellar coverage, and consider continuous analyses that account for individual differences in reading skill.

Data availability

Raw and preprocessed neuroimaging data from the Healthy Brain Network are publicly available without restriction, and can be downloaded from Amazon Simple Storage Service (S3) following directions from the HBN-POD2 manuscript (Richie-Halford et al., 2022).Access to full phenotypic and behavioral data, which are stored at https://data.healthybrainnetwork.org/main.php, is restricted. For this reason, we cannot make our full study outputs publicly available. These data can be collected by any entity following directions on the Healthy Brain Network data portal (http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html) after signing a data use agreement.Study-specific code and instructions for processing data and running the statistical models can be found at https://github.com/smeisler/Meisler_Reading_FBA. We share the population FOD template, tract segmentations, and model outputs (which only report data in the aggregate) at https://osf.io/3ady4/. These can all be viewed using MRview from MRtrix3.

The following previously published data sets were used
    1. Richie-Halford A
    2. et al
    (2022) HBN-POD2
    s3://fcp-indi/data/Projects/HBN/BIDS_curated/derivatives/qsiprep/.

Article and author information

Author details

  1. Steven Lee Meisler

    Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, United States
    For correspondence
    smeisler@g.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8888-1572
  2. John Gabrieli

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Deafness and Other Communication Disorders (T32 Training Grant,5T32DC000038)

  • Steven Lee Meisler

Chan Zuckerberg Initiative

  • John Gabrieli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The Healthy Brain Network project was approved by the Chesapeake Institutional Review Board (now called Advarra, Inc.; https://www.advarra.com/; protocol number: Pro00012309). Informed consent was obtained from all participants ages 18 or older. For younger participants, written informed consent was collected from their legal guardians, and written assent was obtained from the participants.

Copyright

© 2022, Meisler & Gabrieli

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,227
    views
  • 175
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steven Lee Meisler
  2. John Gabrieli
(2022)
Fiber-specific structural properties relate to reading skills in children and adolescents
eLife 11:e82088.
https://doi.org/10.7554/eLife.82088

Share this article

https://doi.org/10.7554/eLife.82088

Further reading

    1. Developmental Biology
    2. Neuroscience
    Sebastián Giunti, María Gabriela Blanco ... Diego Rayes
    Research Article

    A finely tuned balance between excitation and inhibition (E/I) is essential for proper brain function. Disruptions in the GABAergic system, which alter this equilibrium, are a common feature in various types of neurological disorders, including autism spectrum disorders (ASDs). Mutations in Phosphatase and Tensin Homolog (PTEN), the main negative regulator of the phosphatidylinositol 3-phosphate kinase/Akt pathway, are strongly associated with ASD. However, it is unclear whether PTEN deficiencies can differentially affect inhibitory and excitatory signaling. Using the Caenorhabditis elegans neuromuscular system, where both excitatory (cholinergic) and inhibitory (GABAergic) inputs regulate muscle activity, we found that daf-18/PTEN mutations impact GABAergic (but not cholinergic) neurodevelopment and function. This selective impact results in a deficiency in inhibitory signaling. The defects observed in the GABAergic system in daf-18/PTEN mutants are due to reduced activity of DAF-16/FOXO during development. Ketogenic diets (KGDs) have proven effective for disorders associated with E/I imbalances. However, the mechanisms underlying their action remain largely elusive. We found that a diet enriched with the ketone body β-hydroxybutyrate during early development induces DAF-16/FOXO activity, therefore improving GABAergic neurodevelopment and function in daf-18/PTEN mutants. Our study provides valuable insights into the link between PTEN mutations and neurodevelopmental defects and delves into the mechanisms underlying the potential therapeutic effects of KGDs.

    1. Neuroscience
    Chen Wang, Berta Vidal ... Oliver Hobert
    Tools and Resources

    Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the Caenorhabditis elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells, most notably in gonadal cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel sites of monoaminergic neurotransmitter uptake. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.