Coordinated cadherin functions sculpt respiratory motor circuit connectivity

  1. Alicia N Vagnozzi
  2. Matthew T Moore
  3. Minshan Lin
  4. Elyse M Brozost
  5. Ritesh KC
  6. Aambar Agarwal
  7. Lindsay A Schwarz
  8. Xin Duan
  9. Niccolò Zampieri
  10. Lynn T Landmesser
  11. Polyxeni Philippidou  Is a corresponding author
  1. Case Western Reserve University, United States
  2. St. Jude Children's Research Hospital, United States
  3. University of California, San Francisco, United States
  4. Max Delbrück Center for Molecular Medicine, Germany

Abstract

Breathing, and the motor circuits that control it, are essential for life. At the core of respiratory circuits are Dbx1-derived interneurons, which generate the rhythm and pattern of breathing, and phrenic motor neurons (MNs), which provide the final motor output that drives diaphragm muscle contractions during inspiration. Despite their critical function, the principles that dictate how respiratory circuits assemble are unknown. Here we show that coordinated activity of a type I cadherin (N-cadherin) and type II cadherins (Cadherin-6, -9, and -10) is required in both MNs and Dbx1-derived neurons to generate robust respiratory motor output. Both MN- and Dbx1-specific cadherin inactivation in mice during a critical developmental window results in perinatal lethality due to respiratory failure and a striking reduction in phrenic MN bursting activity. This combinatorial cadherin code is required to establish phrenic MN cell body and dendritic topography; surprisingly, however, cell body position appears to be dispensable for the targeting of phrenic MNs by descending respiratory inputs. Our findings demonstrate that type I and type II cadherins function cooperatively throughout the respiratory circuit to generate a robust breathing output and reveal novel strategies that drive the assembly of motor circuits.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; source data files have been provided for Figures 1,2,3,4 and 6.

Article and author information

Author details

  1. Alicia N Vagnozzi

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6152-8728
  2. Matthew T Moore

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Minshan Lin

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elyse M Brozost

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ritesh KC

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aambar Agarwal

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lindsay A Schwarz

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xin Duan

    Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Niccolò Zampieri

    Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2228-9453
  10. Lynn T Landmesser

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Polyxeni Philippidou

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    For correspondence
    pxp282@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0733-3591

Funding

National Institute of Neurological Disorders and Stroke (R01NS114510)

  • Polyxeni Philippidou

National Eye Institute (R01EY030138)

  • Xin Duan

Eunice Kennedy Shriver National Institute of Child Health and Human Development (F30HD096788)

  • Alicia N Vagnozzi

National Institute of Neurological Disorders and Stroke (F31NS124240)

  • Matthew T Moore

National Institute of Neurological Disorders and Stroke (F31NS120699)

  • Ritesh KC

St. Jude Children's Research Hospital

  • Lindsay A Schwarz

NIHGM (T32GM007250)

  • Alicia N Vagnozzi

NIHGM (T32GM008056)

  • Ritesh KC

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse colony maintenance and handling was performed in compliance with protocols approved by the Institutional Animal Care Use Committee of Case Western Reserve University (assurance number: A-3145-01, protocol number: 2015-0180). Mice were housed in a 12-hour light/dark cycle in cages containing no more than five animals at a time.

Reviewing Editor

  1. Anne E West, Duke University, United States

Version history

  1. Received: July 23, 2022
  2. Preprint posted: August 4, 2022 (view preprint)
  3. Accepted: December 29, 2022
  4. Accepted Manuscript published: December 30, 2022 (version 1)
  5. Version of Record published: February 9, 2023 (version 2)

Copyright

© 2022, Vagnozzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 623
    Page views
  • 118
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alicia N Vagnozzi
  2. Matthew T Moore
  3. Minshan Lin
  4. Elyse M Brozost
  5. Ritesh KC
  6. Aambar Agarwal
  7. Lindsay A Schwarz
  8. Xin Duan
  9. Niccolò Zampieri
  10. Lynn T Landmesser
  11. Polyxeni Philippidou
(2022)
Coordinated cadherin functions sculpt respiratory motor circuit connectivity
eLife 11:e82116.
https://doi.org/10.7554/eLife.82116

Share this article

https://doi.org/10.7554/eLife.82116

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Paul Knabl, Alexandra Schauer ... Grigory Genikhovich
    Research Article

    BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Sima Stroganov ,  Talia   Harris  ... Michal Neeman
    Research Article

    Background: Fetal growth restriction (FGR) is a pregnancy complication in which a newborn fails to achieve its growth potential, increasing the risk of perinatal morbidity and mortality. Chronic maternal gestational hypoxia, as well as placental insufficiency are associated with increased FGR incidence; however, the molecular mechanisms underlying FGR remain unknown.

    Methods: Pregnant mice were subjected to acute or chronic hypoxia (12.5% O2) resulting in reduced fetal weight. Placenta oxygen transport was assessed by blood oxygenation level dependent (BOLD) contrast magnetic resonance imaging (MRI). The placentae were analyzed via immunohistochemistry and in situ hybridization. Human placentae were selected from FGR and matched controls and analyzed by immunohistochemistry (IHC). Maternal and cord sera were analyzed by mass spectrometry.

    Results: We show that murine acute and chronic gestational hypoxia recapitulates FGR phenotype and affects placental structure and morphology. Gestational hypoxia decreased labyrinth area, increased the incidence of red blood cells (RBCs) in the labyrinth while expanding the placental spiral arteries (SpA) diameter. Hypoxic placentae exhibited higher hemoglobin-oxygen affinity compared to the control. Placental abundance of Bisphosphoglycerate mutase (BPGM) was upregulated in the syncytiotrophoblast and spiral artery trophoblast cells (SpA TGCs) in the murine gestational hypoxia groups compared to the control. Hif1a levels were higher in the acute hypoxia group compared to the control. In contrast, human FGR placentae exhibited reduced BPGM levels in the syncytiotrophoblast layer compared to placentae from healthy uncomplicated pregnancies. Levels of 2,3 BPG, the product of BPGM, were lower in cord serum of human FGR placentae compared to control. Polar expression of BPGM, was found in both human and mouse placentae syncytiotrophoblast, with higher expression facing the maternal circulation. Moreover, in the murine SpA TGCs expression of BPGM was concentrated exclusively in the apical cell side, in direct proximity to the maternal circulation.

    Conclusions: This study suggests a possible involvement of placental BPGM in maternal-fetal oxygen transfer, and in the pathophysiology of FGR.

    Funding: This work was supported by the Weizmann Krenter Foundation and the Weizmann - Ichilov (Tel Aviv Sourasky Medical Center) Collaborative Grant in Biomedical Research, and by the Minerva Foundation (to MN), by the ISF KillCorona grant 3777/19 (to MN, MK).