Enhanced single RNA imaging reveals dynamic gene expression in live animals

Abstract

Imaging endogenous mRNAs in live animals is technically challenging. Here we describe an MS2-based signal amplification with the Suntag system that enables live-cell RNA imaging of high temporal resolution and with 8xMS2 stem-loops, which overcomes the obstacle of inserting a 1,300 nt 24xMS2 into the genome for the imaging of endogenous mRNAs. Using this tool, we were able to image the activation of gene expression and the dynamics of endogenous mRNAs in the epidermis of live C. elegans.

Data availability

Videos 1-11 contain source data for Figures.Figure 1-Source data 1 contains source data for statistical analysis in cells.Figure 2-Source data 1 contains source data for statistical analysis in C. elegans.

Article and author information

Author details

  1. Yucen Hu

    Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingxiu Xu

    International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Erqing Gao

    International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xueyuan Fan

    Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8297-1596
  5. Jieli Wei

    Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Bingcheng Ye

    Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Suhong Xu

    Division of Biological Sciences, Zhejiang University, Hangzhou, China
    For correspondence
    shxu@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4079-340X
  8. Weirui Ma

    Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
    For correspondence
    maweirui@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9193-7311

Funding

National Natural Science Foundation of China (31972891)

  • Suhong Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,935
    views
  • 810
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yucen Hu
  2. Jingxiu Xu
  3. Erqing Gao
  4. Xueyuan Fan
  5. Jieli Wei
  6. Bingcheng Ye
  7. Suhong Xu
  8. Weirui Ma
(2023)
Enhanced single RNA imaging reveals dynamic gene expression in live animals
eLife 12:e82178.
https://doi.org/10.7554/eLife.82178

Share this article

https://doi.org/10.7554/eLife.82178

Further reading

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.

    1. Cell Biology
    Nancy Nader, Lama Assaf ... Khaled Machaca
    Research Article

    The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.